Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's break down the options to determine which one represents alpha decay.
Alpha decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle. An alpha particle consists of 2 protons and 2 neutrons, which is equivalent to a helium nucleus represented as [tex]\( {}_2^4 He \)[/tex].
Let's analyze each option:
Option A: [tex]\( {}_{43}^{90} Tc \rightarrow {}_{43}^{90} Tc + \gamma \)[/tex]
- Here, Technetium-90 ([tex]\( {}_{43}^{90} Tc \)[/tex]) is decaying and emitting a gamma photon ([tex]\( \gamma \)[/tex]).
- This is an example of gamma decay, not alpha decay because it involves the emission of a gamma photon, not an alpha particle.
Option B: [tex]\( {}_{64}^{160} Gd \rightarrow {}_{65}^{160} Tb + {}^0 e \)[/tex]
- Here, Gadolinium-160 ([tex]\( {}_{64}^{160} Gd \)[/tex]) is decaying into Terbium-160 ([tex]\( {}_{65}^{160} Tb \)[/tex]) and emitting an electron ([tex]\( {}^0 e \)[/tex]).
- This is an example of beta decay, specifically beta-plus decay or positron emission because the nucleus emits a beta particle (an electron), and the atomic number increases by 1.
Option C: [tex]\( {}_{63}^{150} Eu + {}_{-1}^0 e \rightarrow {}_{62}^{150} Sm \)[/tex]
- Here, Europium-150 ([tex]\( {}_{63}^{150} Eu \)[/tex]) captures an electron ([tex]\( {}_{-1}^0 e \)[/tex]) and converts into Samarium-150 ([tex]\( {}_{62}^{150} Sm \)[/tex]).
- This is an example of electron capture or possibly positron emission as it involves an electron, not the emission of an alpha particle.
Option D: [tex]\( {}_{64}^{148} Gd \rightarrow {}_{62}^{144} Sm + {}_2^4 He \)[/tex]
- Here, Gadolinium-148 ([tex]\( {}_{64}^{148} Gd \)[/tex]) is decaying into Samarium-144 ([tex]\( {}_{62}^{144} Sm \)[/tex]) and emitting a helium nucleus ([tex]\( {}_2^4 He \)[/tex]).
- This is a clear representation of alpha decay because the nucleus emits an alpha particle, consisting of 2 protons and 2 neutrons.
Thus, the correct representation of alpha decay is Option D:
[tex]\[ {}_{64}^{148} Gd \rightarrow {}_{62}^{144} Sm + {}_2^4 He \][/tex]
Alpha decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle. An alpha particle consists of 2 protons and 2 neutrons, which is equivalent to a helium nucleus represented as [tex]\( {}_2^4 He \)[/tex].
Let's analyze each option:
Option A: [tex]\( {}_{43}^{90} Tc \rightarrow {}_{43}^{90} Tc + \gamma \)[/tex]
- Here, Technetium-90 ([tex]\( {}_{43}^{90} Tc \)[/tex]) is decaying and emitting a gamma photon ([tex]\( \gamma \)[/tex]).
- This is an example of gamma decay, not alpha decay because it involves the emission of a gamma photon, not an alpha particle.
Option B: [tex]\( {}_{64}^{160} Gd \rightarrow {}_{65}^{160} Tb + {}^0 e \)[/tex]
- Here, Gadolinium-160 ([tex]\( {}_{64}^{160} Gd \)[/tex]) is decaying into Terbium-160 ([tex]\( {}_{65}^{160} Tb \)[/tex]) and emitting an electron ([tex]\( {}^0 e \)[/tex]).
- This is an example of beta decay, specifically beta-plus decay or positron emission because the nucleus emits a beta particle (an electron), and the atomic number increases by 1.
Option C: [tex]\( {}_{63}^{150} Eu + {}_{-1}^0 e \rightarrow {}_{62}^{150} Sm \)[/tex]
- Here, Europium-150 ([tex]\( {}_{63}^{150} Eu \)[/tex]) captures an electron ([tex]\( {}_{-1}^0 e \)[/tex]) and converts into Samarium-150 ([tex]\( {}_{62}^{150} Sm \)[/tex]).
- This is an example of electron capture or possibly positron emission as it involves an electron, not the emission of an alpha particle.
Option D: [tex]\( {}_{64}^{148} Gd \rightarrow {}_{62}^{144} Sm + {}_2^4 He \)[/tex]
- Here, Gadolinium-148 ([tex]\( {}_{64}^{148} Gd \)[/tex]) is decaying into Samarium-144 ([tex]\( {}_{62}^{144} Sm \)[/tex]) and emitting a helium nucleus ([tex]\( {}_2^4 He \)[/tex]).
- This is a clear representation of alpha decay because the nucleus emits an alpha particle, consisting of 2 protons and 2 neutrons.
Thus, the correct representation of alpha decay is Option D:
[tex]\[ {}_{64}^{148} Gd \rightarrow {}_{62}^{144} Sm + {}_2^4 He \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.