Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the multiplication of two mixed numbers [tex]\(3 \frac{2}{11}\)[/tex] and [tex]\(-3 \frac{3}{5}\)[/tex]:
1. Convert the mixed numbers into improper fractions:
- For [tex]\(3 \frac{2}{11}\)[/tex]:
[tex]\[ 3 \frac{2}{11} = 3 + \frac{2}{11} = \frac{3 \cdot 11 + 2}{11} = \frac{33 + 2}{11} = \frac{35}{11} \][/tex]
- For [tex]\(-3 \frac{3}{5}\)[/tex]:
[tex]\[ -3 \frac{3}{5} = -3 + \frac{-3}{5} = \frac{-3 \cdot 5 - 3}{5} = \frac{-15 - 3}{5} = \frac{-18}{5} \][/tex]
2. Multiply the improper fractions:
[tex]\[ \frac{35}{11} \times \frac{-18}{5} = \frac{35 \cdot -18}{11 \cdot 5} = \frac{-630}{55} \][/tex]
3. Simplify the resulting fraction if possible:
We can simplify [tex]\(\frac{-630}{55}\)[/tex] by dividing the numerator and the denominator by their greatest common divisor. The gcd of 630 and 55 is 5:
[tex]\[ \frac{-630 \div 5}{55 \div 5} = \frac{-126}{11} \][/tex]
4. Convert the simplified improper fraction to a mixed number:
- Divide the numerator by the denominator to get the integer part and the remainder:
[tex]\[ \frac{-126}{11} = -12 \frac{6}{11} \][/tex]
- Here, -126 divided by 11 is -12 with a remainder of 6. This remainder forms the fractional part:
[tex]\[ -12 \frac{6}{11} \][/tex]
Thus, the product of [tex]\(3 \frac{2}{11}\)[/tex] and [tex]\(-3 \frac{3}{5}\)[/tex] is [tex]\( -12 \frac{6}{11} \)[/tex].
1. Convert the mixed numbers into improper fractions:
- For [tex]\(3 \frac{2}{11}\)[/tex]:
[tex]\[ 3 \frac{2}{11} = 3 + \frac{2}{11} = \frac{3 \cdot 11 + 2}{11} = \frac{33 + 2}{11} = \frac{35}{11} \][/tex]
- For [tex]\(-3 \frac{3}{5}\)[/tex]:
[tex]\[ -3 \frac{3}{5} = -3 + \frac{-3}{5} = \frac{-3 \cdot 5 - 3}{5} = \frac{-15 - 3}{5} = \frac{-18}{5} \][/tex]
2. Multiply the improper fractions:
[tex]\[ \frac{35}{11} \times \frac{-18}{5} = \frac{35 \cdot -18}{11 \cdot 5} = \frac{-630}{55} \][/tex]
3. Simplify the resulting fraction if possible:
We can simplify [tex]\(\frac{-630}{55}\)[/tex] by dividing the numerator and the denominator by their greatest common divisor. The gcd of 630 and 55 is 5:
[tex]\[ \frac{-630 \div 5}{55 \div 5} = \frac{-126}{11} \][/tex]
4. Convert the simplified improper fraction to a mixed number:
- Divide the numerator by the denominator to get the integer part and the remainder:
[tex]\[ \frac{-126}{11} = -12 \frac{6}{11} \][/tex]
- Here, -126 divided by 11 is -12 with a remainder of 6. This remainder forms the fractional part:
[tex]\[ -12 \frac{6}{11} \][/tex]
Thus, the product of [tex]\(3 \frac{2}{11}\)[/tex] and [tex]\(-3 \frac{3}{5}\)[/tex] is [tex]\( -12 \frac{6}{11} \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.