At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the heat released when 18.02 grams of water cools from [tex]\(112^{\circ} \text{C}\)[/tex] to [tex]\(90^{\circ} \text{C}\)[/tex], we consider the specific heat capacity of liquid water and apply the concepts of heat transfer.
1. Identify Relevant Constants:
- Mass of water, [tex]\(m = 18.02 \text{ grams}\)[/tex]
- Initial temperature, [tex]\(T_{\text{initial}} = 112^{\circ} \text{C}\)[/tex]
- Final temperature, [tex]\(T_{\text{final}} = 90^{\circ} \text{C}\)[/tex]
- Specific heat capacity of liquid water, [tex]\(c_{\text{liquid}} = 4.184 \text{ J/g} \cdot \text{K}\)[/tex]
2. Calculate the Change in Temperature:
[tex]\[ \Delta T = T_{\text{initial}} - T_{\text{final}} = 112^{\circ} \text{C} - 90^{\circ} \text{C} = 22^{\circ} \text{C} \][/tex]
3. Calculate the Heat Released:
Using the formula for heat transfer [tex]\(Q = mc\Delta T\)[/tex],
[tex]\[ Q = 18.02 \text{ g} \times 4.184 \text{ J/g} \cdot \text{K} \times 22 \text{ K} \][/tex]
Calculate the amount of heat in joules:
[tex]\[ Q = 18.02 \times 4.184 \times 22 = 1659 \text{ J} \][/tex]
4. Convert the Heat to Kilojoules:
[tex]\[ Q_{\text{cooling, kJ}} = \frac{Q}{1000} = \frac{1659}{1000} = 1.659 \text{ kJ} \][/tex]
Since heat is being released (temperature is decreasing), the value is negative:
[tex]\[ \text{Heat released} = -1.659 \text{ kJ} \][/tex]
Thus, to three significant figures, the heat released is:
[tex]\[ -1.659 \][/tex]
1. Identify Relevant Constants:
- Mass of water, [tex]\(m = 18.02 \text{ grams}\)[/tex]
- Initial temperature, [tex]\(T_{\text{initial}} = 112^{\circ} \text{C}\)[/tex]
- Final temperature, [tex]\(T_{\text{final}} = 90^{\circ} \text{C}\)[/tex]
- Specific heat capacity of liquid water, [tex]\(c_{\text{liquid}} = 4.184 \text{ J/g} \cdot \text{K}\)[/tex]
2. Calculate the Change in Temperature:
[tex]\[ \Delta T = T_{\text{initial}} - T_{\text{final}} = 112^{\circ} \text{C} - 90^{\circ} \text{C} = 22^{\circ} \text{C} \][/tex]
3. Calculate the Heat Released:
Using the formula for heat transfer [tex]\(Q = mc\Delta T\)[/tex],
[tex]\[ Q = 18.02 \text{ g} \times 4.184 \text{ J/g} \cdot \text{K} \times 22 \text{ K} \][/tex]
Calculate the amount of heat in joules:
[tex]\[ Q = 18.02 \times 4.184 \times 22 = 1659 \text{ J} \][/tex]
4. Convert the Heat to Kilojoules:
[tex]\[ Q_{\text{cooling, kJ}} = \frac{Q}{1000} = \frac{1659}{1000} = 1.659 \text{ kJ} \][/tex]
Since heat is being released (temperature is decreasing), the value is negative:
[tex]\[ \text{Heat released} = -1.659 \text{ kJ} \][/tex]
Thus, to three significant figures, the heat released is:
[tex]\[ -1.659 \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.