Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To evaluate the definite integral of the function [tex]\( t^2 - 1 \)[/tex] from [tex]\(-5\)[/tex] to [tex]\(5\)[/tex], we will follow these steps:
1. Set Up the Integral:
We need to evaluate the integral:
[tex]\[ \int_{-5}^{5} (t^2 - 1) \, dt \][/tex]
2. Find the Antiderivative:
The antiderivative of [tex]\( t^2 \)[/tex] is [tex]\(\frac{t^3}{3}\)[/tex], and the antiderivative of [tex]\(-1\)[/tex] is [tex]\(-t\)[/tex]. Therefore, the antiderivative of [tex]\( t^2 - 1 \)[/tex] is:
[tex]\[ F(t) = \frac{t^3}{3} - t \][/tex]
3. Evaluate the Antiderivative at the Limits of Integration:
We evaluate [tex]\( F(t) \)[/tex] at the upper limit 5 and the lower limit -5:
[tex]\[ F(5) = \frac{5^3}{3} - 5 = \frac{125}{3} - 5 \][/tex]
Simplifying, we get:
[tex]\[ F(5) = \frac{125}{3} - \frac{15}{3} = \frac{110}{3} \][/tex]
Similarly, at the lower limit -5:
[tex]\[ F(-5) = \frac{(-5)^3}{3} - (-5) = \frac{-125}{3} + 5 \][/tex]
Simplifying, we get:
[tex]\[ F(-5) = \frac{-125}{3} + \frac{15}{3} = \frac{-110}{3} \][/tex]
4. Compute the Definite Integral:
We now subtract the value of the antiderivative at the lower limit from the value at the upper limit:
[tex]\[ \int_{-5}^{5} (t^2 - 1) \, dt = F(5) - F(-5) = \frac{110}{3} - \left( \frac{-110}{3} \right) \][/tex]
Simplifying the expression inside the parentheses, we get:
[tex]\[ \int_{-5}^{5} (t^2 - 1) \, dt = \frac{110}{3} + \frac{110}{3} = \frac{220}{3} \][/tex]
Therefore, the value of the definite integral is:
[tex]\[ \int_{-5}^{5} (t^2 - 1) \, dt = \frac{220}{3} \approx 73.33333333333334 \][/tex]
Verification Using a Graphing Utility:
To verify the result, you can use a graphing utility such as a graphing calculator or software that allows you to input and evaluate definite integrals. Input the function [tex]\( t^2 - 1 \)[/tex] and the limits of integration from [tex]\(-5\)[/tex] to [tex]\(5\)[/tex], and you should observe that the calculated area under the curve matches our result, approximately 73.33333333333334.
1. Set Up the Integral:
We need to evaluate the integral:
[tex]\[ \int_{-5}^{5} (t^2 - 1) \, dt \][/tex]
2. Find the Antiderivative:
The antiderivative of [tex]\( t^2 \)[/tex] is [tex]\(\frac{t^3}{3}\)[/tex], and the antiderivative of [tex]\(-1\)[/tex] is [tex]\(-t\)[/tex]. Therefore, the antiderivative of [tex]\( t^2 - 1 \)[/tex] is:
[tex]\[ F(t) = \frac{t^3}{3} - t \][/tex]
3. Evaluate the Antiderivative at the Limits of Integration:
We evaluate [tex]\( F(t) \)[/tex] at the upper limit 5 and the lower limit -5:
[tex]\[ F(5) = \frac{5^3}{3} - 5 = \frac{125}{3} - 5 \][/tex]
Simplifying, we get:
[tex]\[ F(5) = \frac{125}{3} - \frac{15}{3} = \frac{110}{3} \][/tex]
Similarly, at the lower limit -5:
[tex]\[ F(-5) = \frac{(-5)^3}{3} - (-5) = \frac{-125}{3} + 5 \][/tex]
Simplifying, we get:
[tex]\[ F(-5) = \frac{-125}{3} + \frac{15}{3} = \frac{-110}{3} \][/tex]
4. Compute the Definite Integral:
We now subtract the value of the antiderivative at the lower limit from the value at the upper limit:
[tex]\[ \int_{-5}^{5} (t^2 - 1) \, dt = F(5) - F(-5) = \frac{110}{3} - \left( \frac{-110}{3} \right) \][/tex]
Simplifying the expression inside the parentheses, we get:
[tex]\[ \int_{-5}^{5} (t^2 - 1) \, dt = \frac{110}{3} + \frac{110}{3} = \frac{220}{3} \][/tex]
Therefore, the value of the definite integral is:
[tex]\[ \int_{-5}^{5} (t^2 - 1) \, dt = \frac{220}{3} \approx 73.33333333333334 \][/tex]
Verification Using a Graphing Utility:
To verify the result, you can use a graphing utility such as a graphing calculator or software that allows you to input and evaluate definite integrals. Input the function [tex]\( t^2 - 1 \)[/tex] and the limits of integration from [tex]\(-5\)[/tex] to [tex]\(5\)[/tex], and you should observe that the calculated area under the curve matches our result, approximately 73.33333333333334.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.