Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Given the equation of a circle [tex]\( x^2 + (y - 10)^2 = 16 \)[/tex], we need to find the radius and the center of the circle.
First, let's recall the standard form of a circle's equation:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
where [tex]\((h, k)\)[/tex] is the center of the circle and [tex]\(r\)[/tex] is the radius.
By comparing the given equation [tex]\( x^2 + (y - 10)^2 = 16 \)[/tex] with the standard form:
1. The term [tex]\((x - h)^2\)[/tex] in the standard form corresponds to [tex]\( x^2\)[/tex] in the given equation. This means [tex]\( h = 0 \)[/tex].
2. The term [tex]\((y - k)^2\)[/tex] in the standard form corresponds to [tex]\((y - 10)^2\)[/tex] in the given equation. This means [tex]\( k = 10 \)[/tex].
So, the center of the circle is [tex]\((h, k) = (0, 10)\)[/tex].
Next, we need to find the radius [tex]\(r\)[/tex]. The right-hand side of the given equation is [tex]\( 16 \)[/tex], which corresponds to [tex]\( r^2 \)[/tex] in the standard form. Therefore,
[tex]\[ r^2 = 16 \][/tex]
To find [tex]\(r\)[/tex], we take the square root of both sides:
[tex]\[ r = \sqrt{16} = 4 \][/tex]
Thus, the radius of the circle is [tex]\( 4 \)[/tex] units.
To summarize:
- The radius of the circle is [tex]\( \boxed{4} \)[/tex] units.
- The center of the circle is at [tex]\( \boxed{(0, 10)} \)[/tex].
First, let's recall the standard form of a circle's equation:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
where [tex]\((h, k)\)[/tex] is the center of the circle and [tex]\(r\)[/tex] is the radius.
By comparing the given equation [tex]\( x^2 + (y - 10)^2 = 16 \)[/tex] with the standard form:
1. The term [tex]\((x - h)^2\)[/tex] in the standard form corresponds to [tex]\( x^2\)[/tex] in the given equation. This means [tex]\( h = 0 \)[/tex].
2. The term [tex]\((y - k)^2\)[/tex] in the standard form corresponds to [tex]\((y - 10)^2\)[/tex] in the given equation. This means [tex]\( k = 10 \)[/tex].
So, the center of the circle is [tex]\((h, k) = (0, 10)\)[/tex].
Next, we need to find the radius [tex]\(r\)[/tex]. The right-hand side of the given equation is [tex]\( 16 \)[/tex], which corresponds to [tex]\( r^2 \)[/tex] in the standard form. Therefore,
[tex]\[ r^2 = 16 \][/tex]
To find [tex]\(r\)[/tex], we take the square root of both sides:
[tex]\[ r = \sqrt{16} = 4 \][/tex]
Thus, the radius of the circle is [tex]\( 4 \)[/tex] units.
To summarize:
- The radius of the circle is [tex]\( \boxed{4} \)[/tex] units.
- The center of the circle is at [tex]\( \boxed{(0, 10)} \)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.