Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

An acute triangle has two sides measuring 8 cm and 10 cm. What is the best representation of the possible range of values for the third side, [tex]\( s \)[/tex]?

A. [tex]\( 2 \ \textless \ s \ \textless \ 18 \)[/tex]

B. [tex]\( 6 \ \textless \ s \ \textless \ 12.8 \)[/tex]

C. [tex]\( s \ \textless \ 2 \)[/tex] or [tex]\( s \ \textgreater \ 18 \)[/tex]

D. [tex]\( s \ \textless \ 6 \)[/tex] or [tex]\( s \ \textgreater \ 12.8 \)[/tex]

Sagot :

To find the possible range of values for the third side [tex]\( s \)[/tex] of an acute triangle with sides measuring 8 cm and 10 cm, we will use two key properties:

1. Triangle Inequality Theorem: The sum of the lengths of any two sides of a triangle must be greater than the length of the third side.
2. Acute Triangle Condition: Each angle in an acute triangle must be less than 90 degrees, which implies that the square of the length of the longest side must be less than the sum of the squares of the lengths of the other two sides.

Let's derive the range step-by-step:

### 1. Triangle Inequality Theorem

For a triangle with sides [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] (where [tex]\( a = 8 \)[/tex] cm, [tex]\( b = 10 \)[/tex] cm, and [tex]\( c = s \)[/tex]):

- [tex]\( a + b > c \)[/tex]
- [tex]\( a + c > b \)[/tex]
- [tex]\( b + c > a \)[/tex]

Given [tex]\( a = 8 \)[/tex] and [tex]\( b = 10 \)[/tex]:

- [tex]\( 8 + 10 > s \Rightarrow s < 18 \)[/tex]
- [tex]\( 8 + s > 10 \Rightarrow s > 2 \)[/tex]
- [tex]\( 10 + s > 8 \)[/tex]

The third condition [tex]\( 10 + s > 8 \)[/tex] is always true for any [tex]\( s > 0 \)[/tex], so we do not need to explicitly consider it. Thus, based on the Triangle Inequality Theorem, we have:

[tex]\[ 2 < s < 18 \][/tex]

### 2. Acute Triangle Condition

For the triangle to be acute, the square of the length of any side must be less than the sum of the squares of the lengths of the other two sides:

- [tex]\( s^2 < a^2 + b^2 \Rightarrow s^2 < 8^2 + 10^2 \Rightarrow s^2 < 64 + 100 \Rightarrow s^2 < 164 \Rightarrow s < \sqrt{164} \)[/tex]

Calculating [tex]\( \sqrt{164} \)[/tex]:

[tex]\[ s < \sqrt{164} \approx 12.8 \][/tex]

### Combining Both Conditions

To satisfy both the Triangle Inequality Theorem and acute triangle condition:

[tex]\[ 2 < s < 12.8 \][/tex]

Thus, the best representation of the possible range of values for the third side [tex]\( s \)[/tex] is:

[tex]\[ \boxed{6 < s < 12.8} \][/tex]