Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

2. If [tex]$x$[/tex] is inversely proportional to [tex]$y$[/tex], and [tex]$x = 60$[/tex] when [tex]$y = 0.5$[/tex], find [tex]$x$[/tex] when [tex]$y = 12$[/tex].

A. 0.4
B. 2.5
C. 25
D. 360


Sagot :

To solve this problem, we need to use the concept of inverse proportionality. When two quantities are inversely proportional to each other, their product is always a constant. Mathematically, if [tex]\(x\)[/tex] is inversely proportional to [tex]\(y\)[/tex], then [tex]\(x \cdot y = k\)[/tex], where [tex]\(k\)[/tex] is a constant.

Given the problem:
- [tex]\( x = 60 \)[/tex] when [tex]\( y = 0.5 \)[/tex].

Let's first find the constant [tex]\( k \)[/tex]:

[tex]\[ k = x \cdot y = 60 \cdot 0.5 = 30 \][/tex]

Now, we need to find [tex]\( x \)[/tex] when [tex]\( y = 12 \)[/tex]. According to the inverse proportionality:

[tex]\[ x \cdot y = k \][/tex]

Substituting the known values:

[tex]\[ x \cdot 12 = 30 \][/tex]

Solving for [tex]\( x \)[/tex]:

[tex]\[ x = \frac{30}{12} \][/tex]
[tex]\[ x = 2.5 \][/tex]

Therefore, the value of [tex]\( x \)[/tex] when [tex]\( y = 12 \)[/tex] is:

[tex]\[ \boxed{2.5} \][/tex]