Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the values of [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex] needed to write the quadratic equation in standard form, let’s follow these steps.
1. Identify the given equation:
The given equation is [tex]\(\frac{1}{4} x^2 + 5 = 0\)[/tex].
2. Understand the standard form of a quadratic equation:
The standard form of a quadratic equation is [tex]\(Ax^2 + Bx + C = 0\)[/tex], where [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex] are constants.
3. Compare the given equation with the standard form:
Compare [tex]\(\frac{1}{4} x^2 + 5 = 0\)[/tex] with [tex]\(Ax^2 + Bx + C = 0\)[/tex].
4. Determine the coefficients [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex]:
- The term [tex]\(\frac{1}{4} x^2\)[/tex] corresponds to [tex]\(Ax^2\)[/tex]. Therefore, [tex]\(A = \frac{1}{4}\)[/tex].
- There is no [tex]\(x\)[/tex] term in the equation, which means [tex]\(B = 0\)[/tex].
- The constant term is [tex]\(5\)[/tex], which corresponds to [tex]\(C\)[/tex]. Therefore, [tex]\(C = 5\)[/tex].
So we have:
[tex]\[ A = 0.25, \ B = 0, \ C = 5 \][/tex]
Given this information, let's check the provided choices:
- [tex]\(A = 1 ; B = 0 ; C = 20\)[/tex]: These values do not correspond to our identification.
- [tex]\(A = 1 ; B = 0 ; C = -5\)[/tex]: These values do not correspond either.
- [tex]\(A = \frac{1}{4} ; B = 5 ; C = 0\)[/tex]: These values are not correct since [tex]\(B=5\)[/tex] is incorrect.
None of the provided options match the correct values.
It's important to note the exact correct values:
[tex]\[ A = 0.25, \ B = 0, \ C = 5 \][/tex]
1. Identify the given equation:
The given equation is [tex]\(\frac{1}{4} x^2 + 5 = 0\)[/tex].
2. Understand the standard form of a quadratic equation:
The standard form of a quadratic equation is [tex]\(Ax^2 + Bx + C = 0\)[/tex], where [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex] are constants.
3. Compare the given equation with the standard form:
Compare [tex]\(\frac{1}{4} x^2 + 5 = 0\)[/tex] with [tex]\(Ax^2 + Bx + C = 0\)[/tex].
4. Determine the coefficients [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex]:
- The term [tex]\(\frac{1}{4} x^2\)[/tex] corresponds to [tex]\(Ax^2\)[/tex]. Therefore, [tex]\(A = \frac{1}{4}\)[/tex].
- There is no [tex]\(x\)[/tex] term in the equation, which means [tex]\(B = 0\)[/tex].
- The constant term is [tex]\(5\)[/tex], which corresponds to [tex]\(C\)[/tex]. Therefore, [tex]\(C = 5\)[/tex].
So we have:
[tex]\[ A = 0.25, \ B = 0, \ C = 5 \][/tex]
Given this information, let's check the provided choices:
- [tex]\(A = 1 ; B = 0 ; C = 20\)[/tex]: These values do not correspond to our identification.
- [tex]\(A = 1 ; B = 0 ; C = -5\)[/tex]: These values do not correspond either.
- [tex]\(A = \frac{1}{4} ; B = 5 ; C = 0\)[/tex]: These values are not correct since [tex]\(B=5\)[/tex] is incorrect.
None of the provided options match the correct values.
It's important to note the exact correct values:
[tex]\[ A = 0.25, \ B = 0, \ C = 5 \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.