Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the values of [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex] needed to write the quadratic equation in standard form, let’s follow these steps.
1. Identify the given equation:
The given equation is [tex]\(\frac{1}{4} x^2 + 5 = 0\)[/tex].
2. Understand the standard form of a quadratic equation:
The standard form of a quadratic equation is [tex]\(Ax^2 + Bx + C = 0\)[/tex], where [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex] are constants.
3. Compare the given equation with the standard form:
Compare [tex]\(\frac{1}{4} x^2 + 5 = 0\)[/tex] with [tex]\(Ax^2 + Bx + C = 0\)[/tex].
4. Determine the coefficients [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex]:
- The term [tex]\(\frac{1}{4} x^2\)[/tex] corresponds to [tex]\(Ax^2\)[/tex]. Therefore, [tex]\(A = \frac{1}{4}\)[/tex].
- There is no [tex]\(x\)[/tex] term in the equation, which means [tex]\(B = 0\)[/tex].
- The constant term is [tex]\(5\)[/tex], which corresponds to [tex]\(C\)[/tex]. Therefore, [tex]\(C = 5\)[/tex].
So we have:
[tex]\[ A = 0.25, \ B = 0, \ C = 5 \][/tex]
Given this information, let's check the provided choices:
- [tex]\(A = 1 ; B = 0 ; C = 20\)[/tex]: These values do not correspond to our identification.
- [tex]\(A = 1 ; B = 0 ; C = -5\)[/tex]: These values do not correspond either.
- [tex]\(A = \frac{1}{4} ; B = 5 ; C = 0\)[/tex]: These values are not correct since [tex]\(B=5\)[/tex] is incorrect.
None of the provided options match the correct values.
It's important to note the exact correct values:
[tex]\[ A = 0.25, \ B = 0, \ C = 5 \][/tex]
1. Identify the given equation:
The given equation is [tex]\(\frac{1}{4} x^2 + 5 = 0\)[/tex].
2. Understand the standard form of a quadratic equation:
The standard form of a quadratic equation is [tex]\(Ax^2 + Bx + C = 0\)[/tex], where [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex] are constants.
3. Compare the given equation with the standard form:
Compare [tex]\(\frac{1}{4} x^2 + 5 = 0\)[/tex] with [tex]\(Ax^2 + Bx + C = 0\)[/tex].
4. Determine the coefficients [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex]:
- The term [tex]\(\frac{1}{4} x^2\)[/tex] corresponds to [tex]\(Ax^2\)[/tex]. Therefore, [tex]\(A = \frac{1}{4}\)[/tex].
- There is no [tex]\(x\)[/tex] term in the equation, which means [tex]\(B = 0\)[/tex].
- The constant term is [tex]\(5\)[/tex], which corresponds to [tex]\(C\)[/tex]. Therefore, [tex]\(C = 5\)[/tex].
So we have:
[tex]\[ A = 0.25, \ B = 0, \ C = 5 \][/tex]
Given this information, let's check the provided choices:
- [tex]\(A = 1 ; B = 0 ; C = 20\)[/tex]: These values do not correspond to our identification.
- [tex]\(A = 1 ; B = 0 ; C = -5\)[/tex]: These values do not correspond either.
- [tex]\(A = \frac{1}{4} ; B = 5 ; C = 0\)[/tex]: These values are not correct since [tex]\(B=5\)[/tex] is incorrect.
None of the provided options match the correct values.
It's important to note the exact correct values:
[tex]\[ A = 0.25, \ B = 0, \ C = 5 \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.