Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve this problem, we need to determine the possible equations for a circle with a diameter of 12 units, centered on the x-axis.
### Step-by-Step Solution:
1. Determine the Radius:
- The diameter of the circle is given as 12 units.
- The radius ([tex]\(r\)[/tex]) of a circle is half of its diameter.
[tex]\[ r = \frac{\text{Diameter}}{2} = \frac{12}{2} = 6 \text{ units} \][/tex]
2. Identify Possible Centers on the x-axis:
- Since the circle’s center lies on the x-axis, the y-coordinate of the center is 0.
- The circle can be centered at any point [tex]\((a, 0)\)[/tex] on the x-axis.
3. Write the General Equation of the Circle:
- The standard form of the equation of a circle with center [tex]\((a, b)\)[/tex] and radius [tex]\(r\)[/tex] is:
[tex]\[ (x - a)^2 + (y - b)^2 = r^2 \][/tex]
- Plugging in the known values [tex]\(b = 0\)[/tex] and [tex]\(r = 6\)[/tex], the equation becomes:
[tex]\[ (x - a)^2 + y^2 = 6^2 \][/tex]
- Simplifying, we get:
[tex]\[ (x - a)^2 + y^2 = 36 \][/tex]
4. Check the Provided Options:
- Compare the provided equations to the general form [tex]\((x - a)^2 + y^2 = 36\)[/tex], considering various possible values for [tex]\(a\)[/tex].
- Option 1: [tex]\((x-12)^2 + y^2 = 12\)[/tex]
- Wrong radius squared [tex]\(12 \neq 36\)[/tex]. This doesn't match the required form.
- Option 2: [tex]\((x-6)^2 + y^2 = 36\)[/tex]
- Center at [tex]\((6, 0)\)[/tex] with radius 6. This is a valid equation.
- Option 3: [tex]\(x^2 + y^2 = 12\)[/tex]
- Neither proper radius squared nor consideration of center on the x-axis (not matching required distance). Incorrect form.
- Option 4: [tex]\(x^2 + y^2 = 144\)[/tex]
- Incorrect radius squared (144 instead of 36).
- Option 5: [tex]\((x+6)^2 + y^2 = 36\)[/tex]
- Center at [tex]\((-6, 0)\)[/tex] with radius 6. This is a valid equation.
- Option 6: [tex]\((x+12)^2 + y^2 = 144\)[/tex]
- Incorrect radius squared (144 instead of 36).
Therefore, the correct equations for the circles are:
[tex]\[ (x-6)^2 + y^2 = 36 \][/tex]
[tex]\[ (x+6)^2 + y^2 = 36 \][/tex]
### Step-by-Step Solution:
1. Determine the Radius:
- The diameter of the circle is given as 12 units.
- The radius ([tex]\(r\)[/tex]) of a circle is half of its diameter.
[tex]\[ r = \frac{\text{Diameter}}{2} = \frac{12}{2} = 6 \text{ units} \][/tex]
2. Identify Possible Centers on the x-axis:
- Since the circle’s center lies on the x-axis, the y-coordinate of the center is 0.
- The circle can be centered at any point [tex]\((a, 0)\)[/tex] on the x-axis.
3. Write the General Equation of the Circle:
- The standard form of the equation of a circle with center [tex]\((a, b)\)[/tex] and radius [tex]\(r\)[/tex] is:
[tex]\[ (x - a)^2 + (y - b)^2 = r^2 \][/tex]
- Plugging in the known values [tex]\(b = 0\)[/tex] and [tex]\(r = 6\)[/tex], the equation becomes:
[tex]\[ (x - a)^2 + y^2 = 6^2 \][/tex]
- Simplifying, we get:
[tex]\[ (x - a)^2 + y^2 = 36 \][/tex]
4. Check the Provided Options:
- Compare the provided equations to the general form [tex]\((x - a)^2 + y^2 = 36\)[/tex], considering various possible values for [tex]\(a\)[/tex].
- Option 1: [tex]\((x-12)^2 + y^2 = 12\)[/tex]
- Wrong radius squared [tex]\(12 \neq 36\)[/tex]. This doesn't match the required form.
- Option 2: [tex]\((x-6)^2 + y^2 = 36\)[/tex]
- Center at [tex]\((6, 0)\)[/tex] with radius 6. This is a valid equation.
- Option 3: [tex]\(x^2 + y^2 = 12\)[/tex]
- Neither proper radius squared nor consideration of center on the x-axis (not matching required distance). Incorrect form.
- Option 4: [tex]\(x^2 + y^2 = 144\)[/tex]
- Incorrect radius squared (144 instead of 36).
- Option 5: [tex]\((x+6)^2 + y^2 = 36\)[/tex]
- Center at [tex]\((-6, 0)\)[/tex] with radius 6. This is a valid equation.
- Option 6: [tex]\((x+12)^2 + y^2 = 144\)[/tex]
- Incorrect radius squared (144 instead of 36).
Therefore, the correct equations for the circles are:
[tex]\[ (x-6)^2 + y^2 = 36 \][/tex]
[tex]\[ (x+6)^2 + y^2 = 36 \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.