At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's verify the hypotheses of Rolle's Theorem and then find the values of [tex]\( c \)[/tex] that satisfy its conclusion for the function [tex]\( f(x) = 5 - 12x + 2x^2 \)[/tex] on the interval [tex]\([2, 4]\)[/tex].
### Hypotheses of Rolle's Theorem:
1. Continuity on the closed interval [tex]\([2, 4]\)[/tex]:
- The function [tex]\( f(x) = 5 - 12x + 2x^2 \)[/tex] is a polynomial.
- Polynomial functions are continuous for all real numbers.
- Hence, [tex]\( f(x) \)[/tex] is continuous on [tex]\([2, 4]\)[/tex].
2. Differentiability on the open interval [tex]\((2, 4)\)[/tex]:
- The function [tex]\( f(x) = 5 - 12x + 2x^2 \)[/tex] is a polynomial.
- Polynomial functions are differentiable for all real numbers.
- Hence, [tex]\( f(x) \)[/tex] is differentiable on [tex]\((2, 4)\)[/tex].
3. [tex]\( f(a) = f(b) \)[/tex] where [tex]\( a = 2 \)[/tex] and [tex]\( b = 4 \)[/tex]:
- Evaluate [tex]\( f(x) \)[/tex] at [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 5 - 12(2) + 2(2)^2 = 5 - 24 + 8 = -11. \][/tex]
- Evaluate [tex]\( f(x) \)[/tex] at [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = 5 - 12(4) + 2(4)^2 = 5 - 48 + 32 = -11. \][/tex]
- We have [tex]\( f(2) = f(4) = -11 \)[/tex], so [tex]\( f(2) = f(4) \)[/tex] is satisfied.
Since all three conditions of Rolle's Theorem are satisfied, there exists at least one number [tex]\( c \)[/tex] in the open interval [tex]\((2, 4)\)[/tex] such that [tex]\( f'(c) = 0 \)[/tex].
### Finding the value(s) of [tex]\( c \)[/tex]:
1. Find the derivative of [tex]\( f(x) \)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx}[5 - 12x + 2x^2] = -12 + 4x. \][/tex]
2. Set the derivative equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ f'(c) = -12 + 4c = 0 \][/tex]
[tex]\[ 4c = 12 \][/tex]
[tex]\[ c = 3. \][/tex]
3. Verify that [tex]\( c = 3 \)[/tex] is in the open interval [tex]\((2, 4)\)[/tex]:
- Since [tex]\( 3 \)[/tex] is between [tex]\( 2 \)[/tex] and [tex]\( 4 \)[/tex], [tex]\( c = 3 \)[/tex] is a valid solution.
Therefore, the number [tex]\( c \)[/tex] that satisfies Rolle's Theorem for [tex]\( f(x) = 5 - 12x + 2x^2 \)[/tex] on the interval [tex]\([2, 4]\)[/tex] is:
[tex]\[ c = 3 \][/tex]
Thus, the final answer is:
[tex]\[ c = 3 \][/tex]
### Hypotheses of Rolle's Theorem:
1. Continuity on the closed interval [tex]\([2, 4]\)[/tex]:
- The function [tex]\( f(x) = 5 - 12x + 2x^2 \)[/tex] is a polynomial.
- Polynomial functions are continuous for all real numbers.
- Hence, [tex]\( f(x) \)[/tex] is continuous on [tex]\([2, 4]\)[/tex].
2. Differentiability on the open interval [tex]\((2, 4)\)[/tex]:
- The function [tex]\( f(x) = 5 - 12x + 2x^2 \)[/tex] is a polynomial.
- Polynomial functions are differentiable for all real numbers.
- Hence, [tex]\( f(x) \)[/tex] is differentiable on [tex]\((2, 4)\)[/tex].
3. [tex]\( f(a) = f(b) \)[/tex] where [tex]\( a = 2 \)[/tex] and [tex]\( b = 4 \)[/tex]:
- Evaluate [tex]\( f(x) \)[/tex] at [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 5 - 12(2) + 2(2)^2 = 5 - 24 + 8 = -11. \][/tex]
- Evaluate [tex]\( f(x) \)[/tex] at [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = 5 - 12(4) + 2(4)^2 = 5 - 48 + 32 = -11. \][/tex]
- We have [tex]\( f(2) = f(4) = -11 \)[/tex], so [tex]\( f(2) = f(4) \)[/tex] is satisfied.
Since all three conditions of Rolle's Theorem are satisfied, there exists at least one number [tex]\( c \)[/tex] in the open interval [tex]\((2, 4)\)[/tex] such that [tex]\( f'(c) = 0 \)[/tex].
### Finding the value(s) of [tex]\( c \)[/tex]:
1. Find the derivative of [tex]\( f(x) \)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx}[5 - 12x + 2x^2] = -12 + 4x. \][/tex]
2. Set the derivative equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ f'(c) = -12 + 4c = 0 \][/tex]
[tex]\[ 4c = 12 \][/tex]
[tex]\[ c = 3. \][/tex]
3. Verify that [tex]\( c = 3 \)[/tex] is in the open interval [tex]\((2, 4)\)[/tex]:
- Since [tex]\( 3 \)[/tex] is between [tex]\( 2 \)[/tex] and [tex]\( 4 \)[/tex], [tex]\( c = 3 \)[/tex] is a valid solution.
Therefore, the number [tex]\( c \)[/tex] that satisfies Rolle's Theorem for [tex]\( f(x) = 5 - 12x + 2x^2 \)[/tex] on the interval [tex]\([2, 4]\)[/tex] is:
[tex]\[ c = 3 \][/tex]
Thus, the final answer is:
[tex]\[ c = 3 \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.