At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's verify the hypotheses of Rolle's Theorem and then find the values of [tex]\( c \)[/tex] that satisfy its conclusion for the function [tex]\( f(x) = 5 - 12x + 2x^2 \)[/tex] on the interval [tex]\([2, 4]\)[/tex].
### Hypotheses of Rolle's Theorem:
1. Continuity on the closed interval [tex]\([2, 4]\)[/tex]:
- The function [tex]\( f(x) = 5 - 12x + 2x^2 \)[/tex] is a polynomial.
- Polynomial functions are continuous for all real numbers.
- Hence, [tex]\( f(x) \)[/tex] is continuous on [tex]\([2, 4]\)[/tex].
2. Differentiability on the open interval [tex]\((2, 4)\)[/tex]:
- The function [tex]\( f(x) = 5 - 12x + 2x^2 \)[/tex] is a polynomial.
- Polynomial functions are differentiable for all real numbers.
- Hence, [tex]\( f(x) \)[/tex] is differentiable on [tex]\((2, 4)\)[/tex].
3. [tex]\( f(a) = f(b) \)[/tex] where [tex]\( a = 2 \)[/tex] and [tex]\( b = 4 \)[/tex]:
- Evaluate [tex]\( f(x) \)[/tex] at [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 5 - 12(2) + 2(2)^2 = 5 - 24 + 8 = -11. \][/tex]
- Evaluate [tex]\( f(x) \)[/tex] at [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = 5 - 12(4) + 2(4)^2 = 5 - 48 + 32 = -11. \][/tex]
- We have [tex]\( f(2) = f(4) = -11 \)[/tex], so [tex]\( f(2) = f(4) \)[/tex] is satisfied.
Since all three conditions of Rolle's Theorem are satisfied, there exists at least one number [tex]\( c \)[/tex] in the open interval [tex]\((2, 4)\)[/tex] such that [tex]\( f'(c) = 0 \)[/tex].
### Finding the value(s) of [tex]\( c \)[/tex]:
1. Find the derivative of [tex]\( f(x) \)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx}[5 - 12x + 2x^2] = -12 + 4x. \][/tex]
2. Set the derivative equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ f'(c) = -12 + 4c = 0 \][/tex]
[tex]\[ 4c = 12 \][/tex]
[tex]\[ c = 3. \][/tex]
3. Verify that [tex]\( c = 3 \)[/tex] is in the open interval [tex]\((2, 4)\)[/tex]:
- Since [tex]\( 3 \)[/tex] is between [tex]\( 2 \)[/tex] and [tex]\( 4 \)[/tex], [tex]\( c = 3 \)[/tex] is a valid solution.
Therefore, the number [tex]\( c \)[/tex] that satisfies Rolle's Theorem for [tex]\( f(x) = 5 - 12x + 2x^2 \)[/tex] on the interval [tex]\([2, 4]\)[/tex] is:
[tex]\[ c = 3 \][/tex]
Thus, the final answer is:
[tex]\[ c = 3 \][/tex]
### Hypotheses of Rolle's Theorem:
1. Continuity on the closed interval [tex]\([2, 4]\)[/tex]:
- The function [tex]\( f(x) = 5 - 12x + 2x^2 \)[/tex] is a polynomial.
- Polynomial functions are continuous for all real numbers.
- Hence, [tex]\( f(x) \)[/tex] is continuous on [tex]\([2, 4]\)[/tex].
2. Differentiability on the open interval [tex]\((2, 4)\)[/tex]:
- The function [tex]\( f(x) = 5 - 12x + 2x^2 \)[/tex] is a polynomial.
- Polynomial functions are differentiable for all real numbers.
- Hence, [tex]\( f(x) \)[/tex] is differentiable on [tex]\((2, 4)\)[/tex].
3. [tex]\( f(a) = f(b) \)[/tex] where [tex]\( a = 2 \)[/tex] and [tex]\( b = 4 \)[/tex]:
- Evaluate [tex]\( f(x) \)[/tex] at [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 5 - 12(2) + 2(2)^2 = 5 - 24 + 8 = -11. \][/tex]
- Evaluate [tex]\( f(x) \)[/tex] at [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = 5 - 12(4) + 2(4)^2 = 5 - 48 + 32 = -11. \][/tex]
- We have [tex]\( f(2) = f(4) = -11 \)[/tex], so [tex]\( f(2) = f(4) \)[/tex] is satisfied.
Since all three conditions of Rolle's Theorem are satisfied, there exists at least one number [tex]\( c \)[/tex] in the open interval [tex]\((2, 4)\)[/tex] such that [tex]\( f'(c) = 0 \)[/tex].
### Finding the value(s) of [tex]\( c \)[/tex]:
1. Find the derivative of [tex]\( f(x) \)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx}[5 - 12x + 2x^2] = -12 + 4x. \][/tex]
2. Set the derivative equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ f'(c) = -12 + 4c = 0 \][/tex]
[tex]\[ 4c = 12 \][/tex]
[tex]\[ c = 3. \][/tex]
3. Verify that [tex]\( c = 3 \)[/tex] is in the open interval [tex]\((2, 4)\)[/tex]:
- Since [tex]\( 3 \)[/tex] is between [tex]\( 2 \)[/tex] and [tex]\( 4 \)[/tex], [tex]\( c = 3 \)[/tex] is a valid solution.
Therefore, the number [tex]\( c \)[/tex] that satisfies Rolle's Theorem for [tex]\( f(x) = 5 - 12x + 2x^2 \)[/tex] on the interval [tex]\([2, 4]\)[/tex] is:
[tex]\[ c = 3 \][/tex]
Thus, the final answer is:
[tex]\[ c = 3 \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.