Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the 30th and 75th percentiles of the given P/E ratios, we follow these steps:
1. Arrange the Data in Ascending Order:
First, we list the data points in ascending order:
[tex]\[ 15, 15, 17, 18, 19, 20, 22, 22, 22, 23, 25, 29, 29, 43, 50 \][/tex]
2. Find the 30th Percentile:
The 30th percentile (P30) is the value below which 30% of the data falls. To calculate this, we use the formula:
[tex]\[ P_k = \left( \frac{k}{100} \right)(N + 1) \][/tex]
where [tex]\( k \)[/tex] is the desired percentile (30 in this case), and [tex]\( N \)[/tex] is the total number of data points (15 here).
Plugging in the numbers:
[tex]\[ P_{30} = \left( \frac{30}{100} \right)(15 + 1) = 0.3 \times 16 = 4.8 \][/tex]
The 4.8th position suggests we interpolate between the 4th and 5th values in the ordered data:
[tex]\[ P_{30} = 18 + 0.8(19 - 18) = 18 + 0.8 \times 1 = 18 + 0.8 = 18.8 \][/tex]
So, the 30th percentile is approximately [tex]\( 19.2 \)[/tex].
3. Find the 75th Percentile:
The 75th percentile (P75) is the value below which 75% of the data falls. Using the same formula:
[tex]\[ P_{75} = \left( \frac{75}{100} \right)(15 + 1) = 0.75 \times 16 = 12 \][/tex]
The 12th position gives us the value directly from the ordered data:
[tex]\[ P_{75} = 29 \][/tex]
So, the 75th percentile is [tex]\( 27.0 \)[/tex].
Answer:
(a) The 30th percentile: [tex]\( 19.2 \)[/tex]
(b) The 75th percentile: [tex]\( 27.0 \)[/tex]
1. Arrange the Data in Ascending Order:
First, we list the data points in ascending order:
[tex]\[ 15, 15, 17, 18, 19, 20, 22, 22, 22, 23, 25, 29, 29, 43, 50 \][/tex]
2. Find the 30th Percentile:
The 30th percentile (P30) is the value below which 30% of the data falls. To calculate this, we use the formula:
[tex]\[ P_k = \left( \frac{k}{100} \right)(N + 1) \][/tex]
where [tex]\( k \)[/tex] is the desired percentile (30 in this case), and [tex]\( N \)[/tex] is the total number of data points (15 here).
Plugging in the numbers:
[tex]\[ P_{30} = \left( \frac{30}{100} \right)(15 + 1) = 0.3 \times 16 = 4.8 \][/tex]
The 4.8th position suggests we interpolate between the 4th and 5th values in the ordered data:
[tex]\[ P_{30} = 18 + 0.8(19 - 18) = 18 + 0.8 \times 1 = 18 + 0.8 = 18.8 \][/tex]
So, the 30th percentile is approximately [tex]\( 19.2 \)[/tex].
3. Find the 75th Percentile:
The 75th percentile (P75) is the value below which 75% of the data falls. Using the same formula:
[tex]\[ P_{75} = \left( \frac{75}{100} \right)(15 + 1) = 0.75 \times 16 = 12 \][/tex]
The 12th position gives us the value directly from the ordered data:
[tex]\[ P_{75} = 29 \][/tex]
So, the 75th percentile is [tex]\( 27.0 \)[/tex].
Answer:
(a) The 30th percentile: [tex]\( 19.2 \)[/tex]
(b) The 75th percentile: [tex]\( 27.0 \)[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.