Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the direction of the velocity of the boat, we need to calculate the angle [tex]\(\theta\)[/tex] that the resultant velocity vector makes with the y-axis.
### Step-by-Step Solution:
1. Identify the velocity components:
- The boat's velocity in the y-direction: [tex]\( v_y = 9.00 \, \text{m/s} \)[/tex]
- The current's velocity in the x-direction: [tex]\( v_x = 2.50 \, \text{m/s} \)[/tex]
2. Use trigonometry to find the angle [tex]\(\theta\)[/tex]:
- The angle [tex]\(\theta\)[/tex] can be found using the tangent function, which relates the opposite side (the velocity component in the x-direction) to the adjacent side (the velocity component in the y-direction).
[tex]\[ \tan(\theta) = \frac{v_x}{v_y} \][/tex]
3. Calculate [tex]\(\theta\)[/tex]:
- Take the arctangent (inverse tangent) of the ratio of these velocities to find the angle [tex]\(\theta\)[/tex].
[tex]\[ \theta = \arctan\left(\frac{2.50 \, \text{m/s}}{9.00 \, \text{m/s}}\right) \][/tex]
4. Convert [tex]\(\theta\)[/tex] from radians to degrees:
- Since the angle is typically desired in degrees, we convert from radians to degrees using the fact that [tex]\(1 \text{ radian} = \frac{180}{\pi} \text{ degrees}\)[/tex].
[tex]\[ \theta \approx 15.5241^{\circ} \][/tex]
Therefore, the direction of the velocity of the boat is approximately [tex]\( \theta = 15.5241^{\circ} \)[/tex] from the y-axis, towards the direction of the current (x-axis).
### Step-by-Step Solution:
1. Identify the velocity components:
- The boat's velocity in the y-direction: [tex]\( v_y = 9.00 \, \text{m/s} \)[/tex]
- The current's velocity in the x-direction: [tex]\( v_x = 2.50 \, \text{m/s} \)[/tex]
2. Use trigonometry to find the angle [tex]\(\theta\)[/tex]:
- The angle [tex]\(\theta\)[/tex] can be found using the tangent function, which relates the opposite side (the velocity component in the x-direction) to the adjacent side (the velocity component in the y-direction).
[tex]\[ \tan(\theta) = \frac{v_x}{v_y} \][/tex]
3. Calculate [tex]\(\theta\)[/tex]:
- Take the arctangent (inverse tangent) of the ratio of these velocities to find the angle [tex]\(\theta\)[/tex].
[tex]\[ \theta = \arctan\left(\frac{2.50 \, \text{m/s}}{9.00 \, \text{m/s}}\right) \][/tex]
4. Convert [tex]\(\theta\)[/tex] from radians to degrees:
- Since the angle is typically desired in degrees, we convert from radians to degrees using the fact that [tex]\(1 \text{ radian} = \frac{180}{\pi} \text{ degrees}\)[/tex].
[tex]\[ \theta \approx 15.5241^{\circ} \][/tex]
Therefore, the direction of the velocity of the boat is approximately [tex]\( \theta = 15.5241^{\circ} \)[/tex] from the y-axis, towards the direction of the current (x-axis).
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.