Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the remainder when the polynomial [tex]\( d^4 + 2d^2 + 5d - 10 \)[/tex] is divided by [tex]\( d + 4 \)[/tex], we can use the Remainder Theorem. The Remainder Theorem states that the remainder of the division of a polynomial [tex]\( f(d) \)[/tex] by [tex]\( d - c \)[/tex] is [tex]\( f(c) \)[/tex].
In this case, we are dividing by [tex]\( d + 4 \)[/tex], which can be written as [tex]\( d - (-4) \)[/tex]. Therefore, according to the Remainder Theorem, we need to evaluate the polynomial [tex]\( f(d) \)[/tex] at [tex]\( d = -4 \)[/tex].
1. Given polynomial: [tex]\( f(d) = d^4 + 2d^2 + 5d - 10 \)[/tex]
2. Substitute [tex]\( d = -4 \)[/tex] into the polynomial:
[tex]\[ f(-4) = (-4)^4 + 2(-4)^2 + 5(-4) - 10 \][/tex]
3. Calculate each term individually:
- [tex]\( (-4)^4 = 256 \)[/tex]
- [tex]\( 2(-4)^2 = 2 \times 16 = 32 \)[/tex]
- [tex]\( 5(-4) = -20 \)[/tex]
- The constant term is [tex]\(-10\)[/tex]
4. Sum these values:
[tex]\[ 256 + 32 - 20 - 10 = 258 \][/tex]
Thus, the remainder when [tex]\( d^4 + 2d^2 + 5d - 10 \)[/tex] is divided by [tex]\( d + 4 \)[/tex] is [tex]\(\boxed{258}\)[/tex].
In this case, we are dividing by [tex]\( d + 4 \)[/tex], which can be written as [tex]\( d - (-4) \)[/tex]. Therefore, according to the Remainder Theorem, we need to evaluate the polynomial [tex]\( f(d) \)[/tex] at [tex]\( d = -4 \)[/tex].
1. Given polynomial: [tex]\( f(d) = d^4 + 2d^2 + 5d - 10 \)[/tex]
2. Substitute [tex]\( d = -4 \)[/tex] into the polynomial:
[tex]\[ f(-4) = (-4)^4 + 2(-4)^2 + 5(-4) - 10 \][/tex]
3. Calculate each term individually:
- [tex]\( (-4)^4 = 256 \)[/tex]
- [tex]\( 2(-4)^2 = 2 \times 16 = 32 \)[/tex]
- [tex]\( 5(-4) = -20 \)[/tex]
- The constant term is [tex]\(-10\)[/tex]
4. Sum these values:
[tex]\[ 256 + 32 - 20 - 10 = 258 \][/tex]
Thus, the remainder when [tex]\( d^4 + 2d^2 + 5d - 10 \)[/tex] is divided by [tex]\( d + 4 \)[/tex] is [tex]\(\boxed{258}\)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.