Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

What is the radius of a circle given by the equation [tex]$x^2 + y^2 - 2x + 8y - 47 = 0$[/tex]?

Radius [tex]=$\square$[/tex] units

Sagot :

To determine the radius of the circle given by the equation [tex]\(x^2 + y^2 - 2x + 8y - 47 = 0\)[/tex], we need to rewrite the equation in the standard form of a circle's equation, [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], where [tex]\((h, k)\)[/tex] is the center of the circle and [tex]\(r\)[/tex] is its radius.

We can achieve this by completing the square for both the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] terms.

1. Group the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] terms together:
[tex]\[ x^2 - 2x + y^2 + 8y = 47 \][/tex]

2. Complete the square for the [tex]\(x\)[/tex] terms:
[tex]\[ x^2 - 2x \][/tex]
To complete the square:
- Take the coefficient of [tex]\(x\)[/tex], which is [tex]\(-2\)[/tex], divide by 2 and square it: [tex]\(\left(\frac{-2}{2}\right)^2 = 1\)[/tex].
- Add and subtract this square inside the equation:
[tex]\[ x^2 - 2x + 1 - 1 = (x - 1)^2 - 1 \][/tex]

3. Complete the square for the [tex]\(y\)[/tex] terms:
[tex]\[ y^2 + 8y \][/tex]
To complete the square:
- Take the coefficient of [tex]\(y\)[/tex], which is [tex]\(8\)[/tex], divide by 2 and square it: [tex]\(\left(\frac{8}{2}\right)^2 = 16\)[/tex].
- Add and subtract this square inside the equation:
[tex]\[ y^2 + 8y + 16 - 16 = (y + 4)^2 - 16 \][/tex]

4. Substitute the completed squares back into the equation:
[tex]\[ (x - 1)^2 - 1 + (y + 4)^2 - 16 = 47 \][/tex]

5. Combine and simplify the constants on the right side:
[tex]\[ (x - 1)^2 + (y + 4)^2 - 17 = 47 \][/tex]
[tex]\[ (x - 1)^2 + (y + 4)^2 = 47 + 17 \][/tex]
[tex]\[ (x - 1)^2 + (y + 4)^2 = 64 \][/tex]

Now we have the equation in the standard form:
[tex]\[ (x - 1)^2 + (y + 4)^2 = 64 \][/tex]

From this, we can see that the radius [tex]\(r\)[/tex] of the circle is:
[tex]\[ r^2 = 64 \implies r = \sqrt{64} = 8 \][/tex]

Thus, the radius of the circle is:
[tex]\[ \boxed{8} \text{ units} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.