Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the magnitude of the resultant velocity of the boat, given its components in the x and y directions, we can use the Pythagorean theorem. Here's a detailed, step-by-step solution:
1. Identify the velocities in the x and y directions:
- The boat's velocity in the y-direction ([tex]\(v_y\)[/tex]) is [tex]\(15.0 \ \text{m/s}\)[/tex].
- The current's velocity in the x-direction ([tex]\(v_x\)[/tex]) is [tex]\(4.00 \ \text{m/s}\)[/tex].
2. Understand that these velocities form a right triangle:
- One leg of the triangle is the velocity in the y-direction [tex]\(v_y = 15.0 \ \text{m/s}\)[/tex].
- The other leg of the triangle is the velocity in the x-direction [tex]\(v_x = 4.00 \ \text{m/s}\)[/tex].
3. Apply the Pythagorean theorem to find the resultant velocity ([tex]\(v\)[/tex]):
The Pythagorean theorem states that in a right triangle, the square of the length of the hypotenuse (the resultant velocity, [tex]\(v\)[/tex]) is equal to the sum of the squares of the lengths of the other two sides (the velocities [tex]\(v_x\)[/tex] and [tex]\(v_y\)[/tex]).
Therefore:
[tex]\[ v^2 = v_x^2 + v_y^2 \][/tex]
4. Substitute the given values:
[tex]\[ v^2 = (4.00 \ \text{m/s})^2 + (15.0 \ \text{m/s})^2 \][/tex]
5. Perform the calculations:
[tex]\[ v^2 = 4.00^2 + 15.0^2 \][/tex]
[tex]\[ v^2 = 16 + 225 \][/tex]
[tex]\[ v^2 = 241 \][/tex]
6. Take the square root of both sides to solve for [tex]\(v\)[/tex]:
[tex]\[ v = \sqrt{241} \][/tex]
7. Find the numerical value:
[tex]\[ v \approx 15.524 \ \text{m/s} \][/tex]
Thus, the magnitude of the boat's velocity is approximately [tex]\( 15.524 \ \text{m/s} \)[/tex].
1. Identify the velocities in the x and y directions:
- The boat's velocity in the y-direction ([tex]\(v_y\)[/tex]) is [tex]\(15.0 \ \text{m/s}\)[/tex].
- The current's velocity in the x-direction ([tex]\(v_x\)[/tex]) is [tex]\(4.00 \ \text{m/s}\)[/tex].
2. Understand that these velocities form a right triangle:
- One leg of the triangle is the velocity in the y-direction [tex]\(v_y = 15.0 \ \text{m/s}\)[/tex].
- The other leg of the triangle is the velocity in the x-direction [tex]\(v_x = 4.00 \ \text{m/s}\)[/tex].
3. Apply the Pythagorean theorem to find the resultant velocity ([tex]\(v\)[/tex]):
The Pythagorean theorem states that in a right triangle, the square of the length of the hypotenuse (the resultant velocity, [tex]\(v\)[/tex]) is equal to the sum of the squares of the lengths of the other two sides (the velocities [tex]\(v_x\)[/tex] and [tex]\(v_y\)[/tex]).
Therefore:
[tex]\[ v^2 = v_x^2 + v_y^2 \][/tex]
4. Substitute the given values:
[tex]\[ v^2 = (4.00 \ \text{m/s})^2 + (15.0 \ \text{m/s})^2 \][/tex]
5. Perform the calculations:
[tex]\[ v^2 = 4.00^2 + 15.0^2 \][/tex]
[tex]\[ v^2 = 16 + 225 \][/tex]
[tex]\[ v^2 = 241 \][/tex]
6. Take the square root of both sides to solve for [tex]\(v\)[/tex]:
[tex]\[ v = \sqrt{241} \][/tex]
7. Find the numerical value:
[tex]\[ v \approx 15.524 \ \text{m/s} \][/tex]
Thus, the magnitude of the boat's velocity is approximately [tex]\( 15.524 \ \text{m/s} \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.