Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Certainly! Let's solve this step-by-step.
### Step 1: Identify the given values
- The first term [tex]\(a_1\)[/tex] of the arithmetic sequence is 13.
- The common difference [tex]\(d\)[/tex] is 3.
- We need to find the sum of the first 7 terms, [tex]\(s_7\)[/tex].
### Step 2: Compute the 7th term ([tex]\(a_7\)[/tex]) of the arithmetic sequence
The formula to find the [tex]\(n\)[/tex]th term of an arithmetic sequence is:
[tex]\[ a_n = a_1 + (n - 1)d \][/tex]
For [tex]\(n = 7\)[/tex], we have:
[tex]\[ a_7 = a_1 + (7 - 1)d \][/tex]
[tex]\[ a_7 = 13 + 6 \cdot 3 \][/tex]
[tex]\[ a_7 = 13 + 18 \][/tex]
[tex]\[ a_7 = 31 \][/tex]
So the 7th term, [tex]\(a_7\)[/tex], is 31.
### Step 3: Compute the sum of the first 7 terms of the sequence
The formula to find the sum [tex]\(S_n\)[/tex] of the first [tex]\(n\)[/tex] terms of an arithmetic sequence is:
[tex]\[ S_n = \frac{n}{2} \cdot (a_1 + a_n) \][/tex]
For [tex]\(n = 7\)[/tex], we have:
[tex]\[ S_7 = \frac{7}{2} \cdot (a_1 + a_7) \][/tex]
[tex]\[ S_7 = \frac{7}{2} \cdot (13 + 31) \][/tex]
[tex]\[ S_7 = \frac{7}{2} \cdot 44 \][/tex]
[tex]\[ S_7 = 7 \cdot 22 \][/tex]
[tex]\[ S_7 = 154 \][/tex]
### Step 4: Select the correct answer
From the calculations, the sum of the first 7 terms [tex]\(S_7\)[/tex] is 154. Hence, the correct answer is:
[tex]\[ \boxed{154} \][/tex]
### Step 1: Identify the given values
- The first term [tex]\(a_1\)[/tex] of the arithmetic sequence is 13.
- The common difference [tex]\(d\)[/tex] is 3.
- We need to find the sum of the first 7 terms, [tex]\(s_7\)[/tex].
### Step 2: Compute the 7th term ([tex]\(a_7\)[/tex]) of the arithmetic sequence
The formula to find the [tex]\(n\)[/tex]th term of an arithmetic sequence is:
[tex]\[ a_n = a_1 + (n - 1)d \][/tex]
For [tex]\(n = 7\)[/tex], we have:
[tex]\[ a_7 = a_1 + (7 - 1)d \][/tex]
[tex]\[ a_7 = 13 + 6 \cdot 3 \][/tex]
[tex]\[ a_7 = 13 + 18 \][/tex]
[tex]\[ a_7 = 31 \][/tex]
So the 7th term, [tex]\(a_7\)[/tex], is 31.
### Step 3: Compute the sum of the first 7 terms of the sequence
The formula to find the sum [tex]\(S_n\)[/tex] of the first [tex]\(n\)[/tex] terms of an arithmetic sequence is:
[tex]\[ S_n = \frac{n}{2} \cdot (a_1 + a_n) \][/tex]
For [tex]\(n = 7\)[/tex], we have:
[tex]\[ S_7 = \frac{7}{2} \cdot (a_1 + a_7) \][/tex]
[tex]\[ S_7 = \frac{7}{2} \cdot (13 + 31) \][/tex]
[tex]\[ S_7 = \frac{7}{2} \cdot 44 \][/tex]
[tex]\[ S_7 = 7 \cdot 22 \][/tex]
[tex]\[ S_7 = 154 \][/tex]
### Step 4: Select the correct answer
From the calculations, the sum of the first 7 terms [tex]\(S_7\)[/tex] is 154. Hence, the correct answer is:
[tex]\[ \boxed{154} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.