Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let’s calculate the height of the basketball after 1.5 seconds using the given equation:
[tex]\[ h(t) = -16t^2 + 25t + 6 \][/tex]
We need to substitute [tex]\( t = 1.5 \)[/tex] seconds into the equation to find the height.
1. Plug [tex]\( t = 1.5 \)[/tex] into the height equation:
[tex]\[ h(1.5) = -16 \cdot (1.5)^2 + 25 \cdot 1.5 + 6 \][/tex]
2. First, calculate [tex]\( (1.5)^2 \)[/tex]:
[tex]\[ (1.5)^2 = 2.25 \][/tex]
3. Multiply by [tex]\(-16\)[/tex]:
[tex]\[ -16 \cdot 2.25 = -36 \][/tex]
4. Multiply [tex]\( 25 \times 1.5 \)[/tex]:
[tex]\[ 25 \cdot 1.5 = 37.5 \][/tex]
5. Now, add these values along with the initial height of 6 feet:
[tex]\[ h(1.5) = -36 + 37.5 + 6 \][/tex]
6. Perform the addition:
[tex]\[ -36 + 37.5 = 1.5 \\ 1.5 + 6 = 7.5 \][/tex]
So, after performing these calculations, we find that the height of the basketball after 1.5 seconds is:
[tex]\[ h = 7.5 \][/tex]
Since the problem asks for the height rounded to the nearest tenth of a foot, and 7.5 is already rounded to the nearest tenth, the basketball is:
[tex]\[ \boxed{7.5} \][/tex]
Hence, after 1.5 seconds, the basketball is 7.5 feet above the ground.
[tex]\[ h(t) = -16t^2 + 25t + 6 \][/tex]
We need to substitute [tex]\( t = 1.5 \)[/tex] seconds into the equation to find the height.
1. Plug [tex]\( t = 1.5 \)[/tex] into the height equation:
[tex]\[ h(1.5) = -16 \cdot (1.5)^2 + 25 \cdot 1.5 + 6 \][/tex]
2. First, calculate [tex]\( (1.5)^2 \)[/tex]:
[tex]\[ (1.5)^2 = 2.25 \][/tex]
3. Multiply by [tex]\(-16\)[/tex]:
[tex]\[ -16 \cdot 2.25 = -36 \][/tex]
4. Multiply [tex]\( 25 \times 1.5 \)[/tex]:
[tex]\[ 25 \cdot 1.5 = 37.5 \][/tex]
5. Now, add these values along with the initial height of 6 feet:
[tex]\[ h(1.5) = -36 + 37.5 + 6 \][/tex]
6. Perform the addition:
[tex]\[ -36 + 37.5 = 1.5 \\ 1.5 + 6 = 7.5 \][/tex]
So, after performing these calculations, we find that the height of the basketball after 1.5 seconds is:
[tex]\[ h = 7.5 \][/tex]
Since the problem asks for the height rounded to the nearest tenth of a foot, and 7.5 is already rounded to the nearest tenth, the basketball is:
[tex]\[ \boxed{7.5} \][/tex]
Hence, after 1.5 seconds, the basketball is 7.5 feet above the ground.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.