At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which equation represents a valid transformation of the parent tangent function to obtain function [tex]\( m \)[/tex], we need to analyze each option. Let's go through them carefully.
A. [tex]\( g(x) = \tan(x) - \frac{\pi}{2} \)[/tex]
In this option, [tex]\(\frac{\pi}{2}\)[/tex] is subtracted from the entire tangent function. However, this does not represent a standard transformation like horizontal or vertical shifts or stretches/compressions. Instead, it results in a vertical shift of [tex]\(\frac{\pi}{2}\)[/tex] units, which is not generally associated with simple transformations of the tangent function.
B. [tex]\( g(x) = \tan(x + \pi) \)[/tex]
Here, [tex]\(\pi\)[/tex] is added inside the argument of the tangent function. This represents a horizontal shift but needs careful analysis:
[tex]\[ \tan(x + \pi) = \tan(x + \pi) = \tan(x) \][/tex]
due to the period of the tangent function being [tex]\(\pi\)[/tex]. This is essentially the same function as [tex]\( \tan(x) \)[/tex].
C. [tex]\( g(x) = \tan(x - \pi) \)[/tex]
Similarly, this subtracts [tex]\(\pi\)[/tex] inside the argument of the tangent function. This also represents a horizontal shift:
[tex]\[ \tan(x - \pi) = \tan(x - \pi) = \tan(x) \][/tex]
due to the periodicity of the tangent function being [tex]\(\pi\)[/tex]. This transformation is essentially the same as [tex]\( \tan(x) \)[/tex].
D. [tex]\( g(x) = \tan \left(x - \frac{\pi}{2}\right) \)[/tex]
This subtracts [tex]\(\frac{\pi}{2}\)[/tex] inside the argument of the tangent function, representing a horizontal shift of [tex]\(\frac{\pi}{2}\)[/tex] units to the right:
[tex]\[ \tan \left(x - \frac{\pi}{2}\right) \][/tex]
This is a valid transformation of the tangent function, shifting the function to the right by [tex]\(\frac{\pi}{2}\)[/tex].
Based on the detailed analysis above, option D ([tex]\( g(x) = \tan \left(x - \frac{\pi}{2}\right) \)[/tex]) correctly represents function [tex]\( m \)[/tex] as a transformation of the parent tangent function.
A. [tex]\( g(x) = \tan(x) - \frac{\pi}{2} \)[/tex]
In this option, [tex]\(\frac{\pi}{2}\)[/tex] is subtracted from the entire tangent function. However, this does not represent a standard transformation like horizontal or vertical shifts or stretches/compressions. Instead, it results in a vertical shift of [tex]\(\frac{\pi}{2}\)[/tex] units, which is not generally associated with simple transformations of the tangent function.
B. [tex]\( g(x) = \tan(x + \pi) \)[/tex]
Here, [tex]\(\pi\)[/tex] is added inside the argument of the tangent function. This represents a horizontal shift but needs careful analysis:
[tex]\[ \tan(x + \pi) = \tan(x + \pi) = \tan(x) \][/tex]
due to the period of the tangent function being [tex]\(\pi\)[/tex]. This is essentially the same function as [tex]\( \tan(x) \)[/tex].
C. [tex]\( g(x) = \tan(x - \pi) \)[/tex]
Similarly, this subtracts [tex]\(\pi\)[/tex] inside the argument of the tangent function. This also represents a horizontal shift:
[tex]\[ \tan(x - \pi) = \tan(x - \pi) = \tan(x) \][/tex]
due to the periodicity of the tangent function being [tex]\(\pi\)[/tex]. This transformation is essentially the same as [tex]\( \tan(x) \)[/tex].
D. [tex]\( g(x) = \tan \left(x - \frac{\pi}{2}\right) \)[/tex]
This subtracts [tex]\(\frac{\pi}{2}\)[/tex] inside the argument of the tangent function, representing a horizontal shift of [tex]\(\frac{\pi}{2}\)[/tex] units to the right:
[tex]\[ \tan \left(x - \frac{\pi}{2}\right) \][/tex]
This is a valid transformation of the tangent function, shifting the function to the right by [tex]\(\frac{\pi}{2}\)[/tex].
Based on the detailed analysis above, option D ([tex]\( g(x) = \tan \left(x - \frac{\pi}{2}\right) \)[/tex]) correctly represents function [tex]\( m \)[/tex] as a transformation of the parent tangent function.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.