Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which equation represents a valid transformation of the parent tangent function to obtain function [tex]\( m \)[/tex], we need to analyze each option. Let's go through them carefully.
A. [tex]\( g(x) = \tan(x) - \frac{\pi}{2} \)[/tex]
In this option, [tex]\(\frac{\pi}{2}\)[/tex] is subtracted from the entire tangent function. However, this does not represent a standard transformation like horizontal or vertical shifts or stretches/compressions. Instead, it results in a vertical shift of [tex]\(\frac{\pi}{2}\)[/tex] units, which is not generally associated with simple transformations of the tangent function.
B. [tex]\( g(x) = \tan(x + \pi) \)[/tex]
Here, [tex]\(\pi\)[/tex] is added inside the argument of the tangent function. This represents a horizontal shift but needs careful analysis:
[tex]\[ \tan(x + \pi) = \tan(x + \pi) = \tan(x) \][/tex]
due to the period of the tangent function being [tex]\(\pi\)[/tex]. This is essentially the same function as [tex]\( \tan(x) \)[/tex].
C. [tex]\( g(x) = \tan(x - \pi) \)[/tex]
Similarly, this subtracts [tex]\(\pi\)[/tex] inside the argument of the tangent function. This also represents a horizontal shift:
[tex]\[ \tan(x - \pi) = \tan(x - \pi) = \tan(x) \][/tex]
due to the periodicity of the tangent function being [tex]\(\pi\)[/tex]. This transformation is essentially the same as [tex]\( \tan(x) \)[/tex].
D. [tex]\( g(x) = \tan \left(x - \frac{\pi}{2}\right) \)[/tex]
This subtracts [tex]\(\frac{\pi}{2}\)[/tex] inside the argument of the tangent function, representing a horizontal shift of [tex]\(\frac{\pi}{2}\)[/tex] units to the right:
[tex]\[ \tan \left(x - \frac{\pi}{2}\right) \][/tex]
This is a valid transformation of the tangent function, shifting the function to the right by [tex]\(\frac{\pi}{2}\)[/tex].
Based on the detailed analysis above, option D ([tex]\( g(x) = \tan \left(x - \frac{\pi}{2}\right) \)[/tex]) correctly represents function [tex]\( m \)[/tex] as a transformation of the parent tangent function.
A. [tex]\( g(x) = \tan(x) - \frac{\pi}{2} \)[/tex]
In this option, [tex]\(\frac{\pi}{2}\)[/tex] is subtracted from the entire tangent function. However, this does not represent a standard transformation like horizontal or vertical shifts or stretches/compressions. Instead, it results in a vertical shift of [tex]\(\frac{\pi}{2}\)[/tex] units, which is not generally associated with simple transformations of the tangent function.
B. [tex]\( g(x) = \tan(x + \pi) \)[/tex]
Here, [tex]\(\pi\)[/tex] is added inside the argument of the tangent function. This represents a horizontal shift but needs careful analysis:
[tex]\[ \tan(x + \pi) = \tan(x + \pi) = \tan(x) \][/tex]
due to the period of the tangent function being [tex]\(\pi\)[/tex]. This is essentially the same function as [tex]\( \tan(x) \)[/tex].
C. [tex]\( g(x) = \tan(x - \pi) \)[/tex]
Similarly, this subtracts [tex]\(\pi\)[/tex] inside the argument of the tangent function. This also represents a horizontal shift:
[tex]\[ \tan(x - \pi) = \tan(x - \pi) = \tan(x) \][/tex]
due to the periodicity of the tangent function being [tex]\(\pi\)[/tex]. This transformation is essentially the same as [tex]\( \tan(x) \)[/tex].
D. [tex]\( g(x) = \tan \left(x - \frac{\pi}{2}\right) \)[/tex]
This subtracts [tex]\(\frac{\pi}{2}\)[/tex] inside the argument of the tangent function, representing a horizontal shift of [tex]\(\frac{\pi}{2}\)[/tex] units to the right:
[tex]\[ \tan \left(x - \frac{\pi}{2}\right) \][/tex]
This is a valid transformation of the tangent function, shifting the function to the right by [tex]\(\frac{\pi}{2}\)[/tex].
Based on the detailed analysis above, option D ([tex]\( g(x) = \tan \left(x - \frac{\pi}{2}\right) \)[/tex]) correctly represents function [tex]\( m \)[/tex] as a transformation of the parent tangent function.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.