Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the values of the function [tex]\( g(x) \)[/tex] at specific points, we need to evaluate the function according to the defined piecewise conditions.
The piecewise function is defined as:
[tex]\[ g(x) = \left\{\begin{array}{ll} 6, & \text{if } -8 \leq x < -2 \\ 0, & \text{if } -2 \leq x < 4 \\ -4, & \text{if } 4 \leq x < 10 \end{array}\right. \][/tex]
Step-by-step:
1. Evaluate [tex]\( g(x) \)[/tex] at [tex]\( x = -2 \)[/tex]:
- According to the piecewise function, if [tex]\(-2 \leq x < 4\)[/tex], then [tex]\( g(x) = 0 \)[/tex].
- Since [tex]\(-2\)[/tex] falls in the interval [tex]\([-2, 4)\)[/tex], we use the rule [tex]\( g(x) = 0 \)[/tex].
Therefore, [tex]\( g(-2) = 0 \)[/tex].
2. Evaluate [tex]\( g(x) \)[/tex] at [tex]\( x = 4 \)[/tex]:
- According to the piecewise function, if [tex]\(4 \leq x < 10\)[/tex], then [tex]\( g(x) = -4 \)[/tex].
- Since [tex]\(4\)[/tex] falls in the interval [tex]\([4, 10)\)[/tex], we use the rule [tex]\( g(x) = -4 \)[/tex].
Therefore, [tex]\( g(4) = -4 \)[/tex].
So, the values of the function are:
[tex]\[ \begin{array}{l} g(-2) = 0 \\ g(4) = -4 \end{array} \][/tex]
The piecewise function is defined as:
[tex]\[ g(x) = \left\{\begin{array}{ll} 6, & \text{if } -8 \leq x < -2 \\ 0, & \text{if } -2 \leq x < 4 \\ -4, & \text{if } 4 \leq x < 10 \end{array}\right. \][/tex]
Step-by-step:
1. Evaluate [tex]\( g(x) \)[/tex] at [tex]\( x = -2 \)[/tex]:
- According to the piecewise function, if [tex]\(-2 \leq x < 4\)[/tex], then [tex]\( g(x) = 0 \)[/tex].
- Since [tex]\(-2\)[/tex] falls in the interval [tex]\([-2, 4)\)[/tex], we use the rule [tex]\( g(x) = 0 \)[/tex].
Therefore, [tex]\( g(-2) = 0 \)[/tex].
2. Evaluate [tex]\( g(x) \)[/tex] at [tex]\( x = 4 \)[/tex]:
- According to the piecewise function, if [tex]\(4 \leq x < 10\)[/tex], then [tex]\( g(x) = -4 \)[/tex].
- Since [tex]\(4\)[/tex] falls in the interval [tex]\([4, 10)\)[/tex], we use the rule [tex]\( g(x) = -4 \)[/tex].
Therefore, [tex]\( g(4) = -4 \)[/tex].
So, the values of the function are:
[tex]\[ \begin{array}{l} g(-2) = 0 \\ g(4) = -4 \end{array} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.