Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine which equation represents a circle that contains the point [tex]\((-2, 8)\)[/tex] and has a center at [tex]\((4, 0)\)[/tex], we follow these steps:
1. Identify key components:
- The center [tex]\((h, k)\)[/tex] of the circle is [tex]\((4, 0)\)[/tex].
- One of the points on the circle is [tex]\((-2, 8)\)[/tex].
2. Calculate the radius using the distance between the center and the point on the circle:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Substitute [tex]\((x_1, y_1) = (4, 0)\)[/tex] and [tex]\((x_2, y_2) = (-2, 8)\)[/tex]:
[tex]\[ \text{Distance} = \sqrt{((-2) - 4)^2 + (8 - 0)^2} \][/tex]
Simplify inside the square root:
[tex]\[ = \sqrt{((-6)^2 + 8^2)} = \sqrt{(36 + 64)} = \sqrt{100} = 10 \][/tex]
Hence, the radius [tex]\( r \)[/tex] of the circle is 10.
3. Write the standard form equation of the circle using the calculated radius [tex]\( r \)[/tex] and the center [tex]\((h, k)\)[/tex]:
The standard form of the equation of a circle is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
Substitute [tex]\( h = 4 \)[/tex], [tex]\( k = 0 \)[/tex], and [tex]\( r = 10 \)[/tex]:
[tex]\[ (x - 4)^2 + y^2 = 10^2 \][/tex]
Simplify:
[tex]\[ (x - 4)^2 + y^2 = 100 \][/tex]
4. Match the given equations to the derived equation:
- [tex]\((x - 4)^2 + y^2 = 100\)[/tex]
- [tex]\((x - 4)^2 + y^2 = 10\)[/tex]
- [tex]\(x^2 + (y - 4)^2 = 10\)[/tex]
- [tex]\(x^2 + (y - 4)^2 = 100\)[/tex]
The equation [tex]\((x - 4)^2 + y^2 = 100\)[/tex] matches the derived equation.
Therefore, the equation that represents the circle is:
[tex]\[ (x - 4)^2 + y^2 = 100 \][/tex]
1. Identify key components:
- The center [tex]\((h, k)\)[/tex] of the circle is [tex]\((4, 0)\)[/tex].
- One of the points on the circle is [tex]\((-2, 8)\)[/tex].
2. Calculate the radius using the distance between the center and the point on the circle:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Substitute [tex]\((x_1, y_1) = (4, 0)\)[/tex] and [tex]\((x_2, y_2) = (-2, 8)\)[/tex]:
[tex]\[ \text{Distance} = \sqrt{((-2) - 4)^2 + (8 - 0)^2} \][/tex]
Simplify inside the square root:
[tex]\[ = \sqrt{((-6)^2 + 8^2)} = \sqrt{(36 + 64)} = \sqrt{100} = 10 \][/tex]
Hence, the radius [tex]\( r \)[/tex] of the circle is 10.
3. Write the standard form equation of the circle using the calculated radius [tex]\( r \)[/tex] and the center [tex]\((h, k)\)[/tex]:
The standard form of the equation of a circle is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
Substitute [tex]\( h = 4 \)[/tex], [tex]\( k = 0 \)[/tex], and [tex]\( r = 10 \)[/tex]:
[tex]\[ (x - 4)^2 + y^2 = 10^2 \][/tex]
Simplify:
[tex]\[ (x - 4)^2 + y^2 = 100 \][/tex]
4. Match the given equations to the derived equation:
- [tex]\((x - 4)^2 + y^2 = 100\)[/tex]
- [tex]\((x - 4)^2 + y^2 = 10\)[/tex]
- [tex]\(x^2 + (y - 4)^2 = 10\)[/tex]
- [tex]\(x^2 + (y - 4)^2 = 100\)[/tex]
The equation [tex]\((x - 4)^2 + y^2 = 100\)[/tex] matches the derived equation.
Therefore, the equation that represents the circle is:
[tex]\[ (x - 4)^2 + y^2 = 100 \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.