Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To simplify the given expression [tex]\(\ln[e(x + 3)]\)[/tex], we can use properties of logarithms and exponentials. Here are the steps to reach the solution:
1. Understanding the Properties of Logarithms:
- One of the key properties of logarithms is that the logarithm of a product is the sum of logarithms: [tex]\(\ln(AB) = \ln(A) + \ln(B)\)[/tex].
- Also, the natural logarithm of the base [tex]\(e\)[/tex] is 1: [tex]\(\ln(e) = 1\)[/tex].
2. Break Down the Expression:
- The expression inside the logarithm is a product of [tex]\(e\)[/tex] and [tex]\((x + 3)\)[/tex].
- Using the product property of logarithms, we can separate the logarithm of a product into a sum of two logarithms:
[tex]\[ \ln[e(x + 3)] = \ln[e] + \ln[x + 3]. \][/tex]
3. Simplify the Logarithm:
- We know that [tex]\(\ln(e) = 1\)[/tex].
4. Combine the Results:
- So, we replace [tex]\(\ln(e)\)[/tex] with 1 in our expression:
[tex]\[ \ln[e(x + 3)] = 1 + \ln[x + 3]. \][/tex]
Therefore, the simplified form of [tex]\(\ln[e(x + 3)]\)[/tex] is:
[tex]\[ \boxed{1 + \ln(x + 3)} \][/tex]
1. Understanding the Properties of Logarithms:
- One of the key properties of logarithms is that the logarithm of a product is the sum of logarithms: [tex]\(\ln(AB) = \ln(A) + \ln(B)\)[/tex].
- Also, the natural logarithm of the base [tex]\(e\)[/tex] is 1: [tex]\(\ln(e) = 1\)[/tex].
2. Break Down the Expression:
- The expression inside the logarithm is a product of [tex]\(e\)[/tex] and [tex]\((x + 3)\)[/tex].
- Using the product property of logarithms, we can separate the logarithm of a product into a sum of two logarithms:
[tex]\[ \ln[e(x + 3)] = \ln[e] + \ln[x + 3]. \][/tex]
3. Simplify the Logarithm:
- We know that [tex]\(\ln(e) = 1\)[/tex].
4. Combine the Results:
- So, we replace [tex]\(\ln(e)\)[/tex] with 1 in our expression:
[tex]\[ \ln[e(x + 3)] = 1 + \ln[x + 3]. \][/tex]
Therefore, the simplified form of [tex]\(\ln[e(x + 3)]\)[/tex] is:
[tex]\[ \boxed{1 + \ln(x + 3)} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.