Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Write the expression as a sum and/or difference of logarithms. Express powers as factors.

[tex]\log_6 \left(\frac{x^{11}}{x-4}\right), \; x \ \textgreater \ 4[/tex]

[tex]\log_6 \left(\frac{x^{11}}{x-4}\right) = \boxed{\text{(Simplify your answer.)}}[/tex]


Sagot :

To transform the expression [tex]\(\log_6\left(\frac{x^{11}}{x-4}\right)\)[/tex] into a sum and/or difference of logarithms, and to express powers as factors, we will use logarithmic properties.

Specifically, we'll use the following properties of logarithms:
1. [tex]\( \log_b \left(\frac{A}{B}\right) = \log_b(A) - \log_b(B) \)[/tex]
2. [tex]\( \log_b(A^C) = C \cdot \log_b(A) \)[/tex]

Let's apply these properties step-by-step:

### Step 1: Break Down the Logarithm of the Fraction
We begin with:
[tex]\[ \log_6\left(\frac{x^{11}}{x-4}\right) \][/tex]

Using the first property ([tex]\( \log_b \left(\frac{A}{B}\right) = \log_b(A) - \log_b(B) \)[/tex]), we can rewrite this as:
[tex]\[ \log_6(x^{11}) - \log_6(x-4) \][/tex]

### Step 2: Simplify the Logarithm of the Power
Next, we'll simplify [tex]\(\log_6(x^{11})\)[/tex] using the property [tex]\( \log_b(A^C) = C \cdot \log_b(A) \)[/tex]:
[tex]\[ \log_6(x^{11}) = 11 \cdot \log_6(x) \][/tex]

### Step 3: Combine the Results
Now we combine the simplified terms:
[tex]\[ 11 \cdot \log_6(x) - \log_6(x-4) \][/tex]

Thus, the expression [tex]\(\log_6\left(\frac{x^{11}}{x-4}\right)\)[/tex] can be written as:
[tex]\[ 11 \cdot \log_6(x) - \log_6(x-4) \][/tex]

So, the final answer is:
[tex]\[ \boxed{11 \cdot \log_6(x) - \log_6(x-4)} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.