At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the given linear system using Gauss-Jordan elimination, follow these detailed steps:
1. Write the system of equations in augmented matrix form:
[tex]\[ \begin{pmatrix} -3 & 4 & | & -6 \\ 5 & -1 & | & 10 \end{pmatrix} \][/tex]
2. Normalize the first row to make the leading coefficient (first element) 1.
Divide each element in the first row by -3:
[tex]\[ \begin{pmatrix} 1 & -\frac{4}{3} & | & 2 \\ 5 & -1 & | & 10 \end{pmatrix} \][/tex]
3. Eliminate the x-term from the second row.
Use row operations to make the element in the second row, first column (5) zero. Subtract 5 times the first row from the second row:
[tex]\[ \begin{pmatrix} 1 & -\frac{4}{3} & | & 2 \\ 0 & \frac{5}{3} & | & 0 \end{pmatrix} \][/tex]
4. Normalize the second row to make the leading coefficient (second element) 1.
Divide each element in the second row by [tex]\(\frac{5}{3}\)[/tex]:
[tex]\[ \begin{pmatrix} 1 & -\frac{4}{3} & | & 2 \\ 0 & 1 & | & 0 \end{pmatrix} \][/tex]
5. Eliminate the y-term from the first row.
Use row operations to make the element in the first row, second column [tex]\(-\frac{4}{3}\)[/tex] zero. Add [tex]\(\frac{4}{3}\)[/tex] times the second row to the first row:
[tex]\[ \begin{pmatrix} 1 & 0 & | & 2 \\ 0 & 1 & | & 0 \end{pmatrix} \][/tex]
Now the augmented matrix is in reduced row-echelon form (RREF). From this matrix, we can directly read off the solutions:
[tex]\[ \begin{cases} x = 2 \\ y = 0 \end{cases} \][/tex]
So the solution to the system of equations is [tex]\((2, 0)\)[/tex].
Therefore, the best answer is:
A. (2,0)
1. Write the system of equations in augmented matrix form:
[tex]\[ \begin{pmatrix} -3 & 4 & | & -6 \\ 5 & -1 & | & 10 \end{pmatrix} \][/tex]
2. Normalize the first row to make the leading coefficient (first element) 1.
Divide each element in the first row by -3:
[tex]\[ \begin{pmatrix} 1 & -\frac{4}{3} & | & 2 \\ 5 & -1 & | & 10 \end{pmatrix} \][/tex]
3. Eliminate the x-term from the second row.
Use row operations to make the element in the second row, first column (5) zero. Subtract 5 times the first row from the second row:
[tex]\[ \begin{pmatrix} 1 & -\frac{4}{3} & | & 2 \\ 0 & \frac{5}{3} & | & 0 \end{pmatrix} \][/tex]
4. Normalize the second row to make the leading coefficient (second element) 1.
Divide each element in the second row by [tex]\(\frac{5}{3}\)[/tex]:
[tex]\[ \begin{pmatrix} 1 & -\frac{4}{3} & | & 2 \\ 0 & 1 & | & 0 \end{pmatrix} \][/tex]
5. Eliminate the y-term from the first row.
Use row operations to make the element in the first row, second column [tex]\(-\frac{4}{3}\)[/tex] zero. Add [tex]\(\frac{4}{3}\)[/tex] times the second row to the first row:
[tex]\[ \begin{pmatrix} 1 & 0 & | & 2 \\ 0 & 1 & | & 0 \end{pmatrix} \][/tex]
Now the augmented matrix is in reduced row-echelon form (RREF). From this matrix, we can directly read off the solutions:
[tex]\[ \begin{cases} x = 2 \\ y = 0 \end{cases} \][/tex]
So the solution to the system of equations is [tex]\((2, 0)\)[/tex].
Therefore, the best answer is:
A. (2,0)
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.