Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve the problem, let's break it down and analyze each statement:
1. Probability of getting a sum that is even:
- The probability of getting a sum that is even is [tex]\( \frac{1}{2} \)[/tex] or 0.5. After calculation, this statement is true.
2. Probability of getting a sum that is a multiple of 3:
- The probability of getting a sum that is a multiple of 3 is [tex]\( \frac{3}{8} \)[/tex] or 0.375. After calculation, this statement is true.
3. Probability of getting a sum equal to 8:
- The statement says that in 80 rounds, the sum is equal to 8 in 20 of those rounds.
- The fraction [tex]\( \frac{20}{80} \)[/tex] simplifies to [tex]\( \frac{1}{4} \)[/tex] or 0.25 indicating the probability.
- The statement "This suggests the game is unfair" is not necessarily true unless further context on fairness or expected probability is given.
- The probability of getting a sum equal to 8 is indeed [tex]\( \frac{1}{4} \)[/tex] or 0.25. This part of the statement is true, but the suggestion of the game being unfair is outside the scope of the given information.
4. Probability of getting a sum that is greater than or equal to 12:
- The probability of getting a sum that is greater or equal to 12 is [tex]\( \frac{11}{40} \)[/tex] or 0.275. After calculation, this statement is true.
5. Probability of getting a sum that is less than 10:
- The probability of getting a sum that is less than 10 is [tex]\( \frac{21}{40} \)[/tex] or 0.525. After calculation, this statement is true.
Therefore, the true statements based on the calculations are all of them:
- The probability of getting a sum that is even is [tex]\( \frac{1}{2} \)[/tex].
- The probability of getting a sum that is a multiple of 3 is [tex]\( \frac{3}{8} \)[/tex].
- The probability of getting a sum equal to 8 is [tex]\( \frac{1}{4} \)[/tex].
- The probability of getting a sum that is greater than or equal to 12 is [tex]\( \frac{11}{40} \)[/tex].
- The probability of getting a sum that is less than 10 is [tex]\( \frac{21}{40} \)[/tex].
1. Probability of getting a sum that is even:
- The probability of getting a sum that is even is [tex]\( \frac{1}{2} \)[/tex] or 0.5. After calculation, this statement is true.
2. Probability of getting a sum that is a multiple of 3:
- The probability of getting a sum that is a multiple of 3 is [tex]\( \frac{3}{8} \)[/tex] or 0.375. After calculation, this statement is true.
3. Probability of getting a sum equal to 8:
- The statement says that in 80 rounds, the sum is equal to 8 in 20 of those rounds.
- The fraction [tex]\( \frac{20}{80} \)[/tex] simplifies to [tex]\( \frac{1}{4} \)[/tex] or 0.25 indicating the probability.
- The statement "This suggests the game is unfair" is not necessarily true unless further context on fairness or expected probability is given.
- The probability of getting a sum equal to 8 is indeed [tex]\( \frac{1}{4} \)[/tex] or 0.25. This part of the statement is true, but the suggestion of the game being unfair is outside the scope of the given information.
4. Probability of getting a sum that is greater than or equal to 12:
- The probability of getting a sum that is greater or equal to 12 is [tex]\( \frac{11}{40} \)[/tex] or 0.275. After calculation, this statement is true.
5. Probability of getting a sum that is less than 10:
- The probability of getting a sum that is less than 10 is [tex]\( \frac{21}{40} \)[/tex] or 0.525. After calculation, this statement is true.
Therefore, the true statements based on the calculations are all of them:
- The probability of getting a sum that is even is [tex]\( \frac{1}{2} \)[/tex].
- The probability of getting a sum that is a multiple of 3 is [tex]\( \frac{3}{8} \)[/tex].
- The probability of getting a sum equal to 8 is [tex]\( \frac{1}{4} \)[/tex].
- The probability of getting a sum that is greater than or equal to 12 is [tex]\( \frac{11}{40} \)[/tex].
- The probability of getting a sum that is less than 10 is [tex]\( \frac{21}{40} \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.