At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To calculate the standard Gibbs free energy change (ΔrG⁰) and the equilibrium constant (log Kc) for the given cell reaction, we follow these steps:
### Step 1: Calculate ΔrG⁰
The standard Gibbs free energy change ΔrG⁰ for the cell reaction can be calculated using the following relationship:
[tex]\[ \Delta_{ r} G ^0 = -nFE_{ \text{cell} } \][/tex]
where:
- [tex]\( n \)[/tex] is the number of moles of electrons transferred in the reaction.
- [tex]\( F \)[/tex] is the Faraday constant (96500 C mol⁻¹).
- [tex]\( E_{\text{cell}} \)[/tex] is the standard cell potential in volts (1.10 V).
Let's plug in the given values:
- [tex]\( n = 2 \)[/tex] (as an example value)
- [tex]\( F = 96500 \)[/tex] C mol⁻¹
- [tex]\( E_{\text{cell}} = 1.10 \)[/tex] V
Thus,
[tex]\[ \Delta_{ r} G ^0 = - (2) (96500) (1.10) \, \text{J} \][/tex]
Calculating the value, we get:
[tex]\[ \Delta_{ r} G ^0 = -212300.00000000003 \, \text{J} \][/tex]
### Step 2: Calculate log Kc
The equilibrium constant Kc can be related to the standard cell potential through the following formula:
[tex]\[ \log K_{ c } = \frac{n FE_{ \text{cell} }}{RT \ln 10 } \][/tex]
However, for simplicity, we can directly compute the natural logarithm and convert it to log base 10:
[tex]\[ \log K_{ c } = \frac{n FE_{ \text{cell} }}{RT} \][/tex]
where:
- [tex]\( R \)[/tex] is the gas constant (8.314 J K⁻¹ mol⁻¹).
- [tex]\( T \)[/tex] is the temperature in Kelvin (298 K).
Using the same values:
- [tex]\( n = 2 \)[/tex]
- [tex]\( F = 96500 \)[/tex] C mol⁻¹
- [tex]\( E_{\text{cell}} = 1.10 \)[/tex] V
- [tex]\( R = 8.314 \)[/tex] J K⁻¹ mol⁻¹
- [tex]\( T = 298 \)[/tex] K
Let's plug in these values:
[tex]\[ \log K_{ c } = \frac{(2)(96500)(1.10)}{(8.314)(298)} \][/tex]
Calculating the value, we get:
[tex]\[ \log K_{ c } = 85.6887307412257 \][/tex]
### Conclusion
Thus, the calculated values are:
- [tex]\(\Delta_{ r} G ^0 = -212300.00000000003 \, \text{J} \)[/tex]
- [tex]\(\log K_{ c } = 85.6887307412257\)[/tex]
These are the standard Gibbs free energy change and the logarithm of the equilibrium constant for the cell reaction given the provided parameters.
### Step 1: Calculate ΔrG⁰
The standard Gibbs free energy change ΔrG⁰ for the cell reaction can be calculated using the following relationship:
[tex]\[ \Delta_{ r} G ^0 = -nFE_{ \text{cell} } \][/tex]
where:
- [tex]\( n \)[/tex] is the number of moles of electrons transferred in the reaction.
- [tex]\( F \)[/tex] is the Faraday constant (96500 C mol⁻¹).
- [tex]\( E_{\text{cell}} \)[/tex] is the standard cell potential in volts (1.10 V).
Let's plug in the given values:
- [tex]\( n = 2 \)[/tex] (as an example value)
- [tex]\( F = 96500 \)[/tex] C mol⁻¹
- [tex]\( E_{\text{cell}} = 1.10 \)[/tex] V
Thus,
[tex]\[ \Delta_{ r} G ^0 = - (2) (96500) (1.10) \, \text{J} \][/tex]
Calculating the value, we get:
[tex]\[ \Delta_{ r} G ^0 = -212300.00000000003 \, \text{J} \][/tex]
### Step 2: Calculate log Kc
The equilibrium constant Kc can be related to the standard cell potential through the following formula:
[tex]\[ \log K_{ c } = \frac{n FE_{ \text{cell} }}{RT \ln 10 } \][/tex]
However, for simplicity, we can directly compute the natural logarithm and convert it to log base 10:
[tex]\[ \log K_{ c } = \frac{n FE_{ \text{cell} }}{RT} \][/tex]
where:
- [tex]\( R \)[/tex] is the gas constant (8.314 J K⁻¹ mol⁻¹).
- [tex]\( T \)[/tex] is the temperature in Kelvin (298 K).
Using the same values:
- [tex]\( n = 2 \)[/tex]
- [tex]\( F = 96500 \)[/tex] C mol⁻¹
- [tex]\( E_{\text{cell}} = 1.10 \)[/tex] V
- [tex]\( R = 8.314 \)[/tex] J K⁻¹ mol⁻¹
- [tex]\( T = 298 \)[/tex] K
Let's plug in these values:
[tex]\[ \log K_{ c } = \frac{(2)(96500)(1.10)}{(8.314)(298)} \][/tex]
Calculating the value, we get:
[tex]\[ \log K_{ c } = 85.6887307412257 \][/tex]
### Conclusion
Thus, the calculated values are:
- [tex]\(\Delta_{ r} G ^0 = -212300.00000000003 \, \text{J} \)[/tex]
- [tex]\(\log K_{ c } = 85.6887307412257\)[/tex]
These are the standard Gibbs free energy change and the logarithm of the equilibrium constant for the cell reaction given the provided parameters.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.