Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the number of households that must be surveyed to be 95% confident that the current estimated population proportion is within a 2% margin of error, we will follow the steps below:
1. Identify the given information:
- Proportion of households using email five years ago, [tex]\(\hat{p}\)[/tex] = 0.76.
- Z-score for 95% confidence, [tex]\(z^*\)[/tex] = 1.96.
- Margin of error, [tex]\(E\)[/tex] = 0.02.
2. Use the formula for sample size:
[tex]\[ n = \hat{p}(1 - \hat{p}) \left( \frac{z^*}{E} \right)^2 \][/tex]
3. Substitute the given values into the formula:
[tex]\[ n = 0.76 \times (1 - 0.76) \left( \frac{1.96}{0.02} \right)^2 \][/tex]
4. Calculate the components step-by-step:
- First, calculate [tex]\(\hat{p} (1 - \hat{p})\)[/tex]:
[tex]\[ 0.76 \times (1 - 0.76) = 0.76 \times 0.24 = 0.1824 \][/tex]
- Next, calculate [tex]\(\left( \frac{z^*}{E} \right)\)[/tex]:
[tex]\[ \left( \frac{1.96}{0.02} \right) = 98 \][/tex]
- Then, square the result of [tex]\(\left( \frac{z^*}{E} \right)\)[/tex]:
[tex]\[ 98^2 = 9604 \][/tex]
- Finally, multiply the results together to find [tex]\(n\)[/tex]:
[tex]\[ n = 0.1824 \times 9604 = 1751.7696 \][/tex]
Thus, the sociologist must survey 1752 households (rounding 1751.7696 to the nearest whole number) to be 95% confident that the current estimated population proportion of households using email is within a 2% margin of error.
1. Identify the given information:
- Proportion of households using email five years ago, [tex]\(\hat{p}\)[/tex] = 0.76.
- Z-score for 95% confidence, [tex]\(z^*\)[/tex] = 1.96.
- Margin of error, [tex]\(E\)[/tex] = 0.02.
2. Use the formula for sample size:
[tex]\[ n = \hat{p}(1 - \hat{p}) \left( \frac{z^*}{E} \right)^2 \][/tex]
3. Substitute the given values into the formula:
[tex]\[ n = 0.76 \times (1 - 0.76) \left( \frac{1.96}{0.02} \right)^2 \][/tex]
4. Calculate the components step-by-step:
- First, calculate [tex]\(\hat{p} (1 - \hat{p})\)[/tex]:
[tex]\[ 0.76 \times (1 - 0.76) = 0.76 \times 0.24 = 0.1824 \][/tex]
- Next, calculate [tex]\(\left( \frac{z^*}{E} \right)\)[/tex]:
[tex]\[ \left( \frac{1.96}{0.02} \right) = 98 \][/tex]
- Then, square the result of [tex]\(\left( \frac{z^*}{E} \right)\)[/tex]:
[tex]\[ 98^2 = 9604 \][/tex]
- Finally, multiply the results together to find [tex]\(n\)[/tex]:
[tex]\[ n = 0.1824 \times 9604 = 1751.7696 \][/tex]
Thus, the sociologist must survey 1752 households (rounding 1751.7696 to the nearest whole number) to be 95% confident that the current estimated population proportion of households using email is within a 2% margin of error.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.