Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
In order to determine if the given chemical reaction is an oxidation-reduction (redox) reaction, we need to analyze whether there is a transfer of electrons between the reactants, which results in a change in oxidation states of the elements involved.
Here's the reaction given:
[tex]\[ \text{CuSO}_4 + \text{Na}_2\text{S} \rightarrow \text{CuS} + \text{Na}_2\text{SO}_4 \][/tex]
Let's analyze the oxidation states of the elements in the reactants and products:
1. Copper sulfate ([tex]\(\text{CuSO}_4\)[/tex]):
- Copper ([tex]\(\text{Cu}\)[/tex]) typically has an oxidation state of [tex]\(+2\)[/tex].
- Sulfate ion ([tex]\(\text{SO}_4^{2-}\)[/tex]) has [tex]\(+6\)[/tex] for sulfur and [tex]\(-2\)[/tex] for each oxygen (total charge of [tex]\(-2\)[/tex]).
2. Sodium sulfide ([tex]\(\text{Na}_2\text{S}\)[/tex]):
- Sodium ([tex]\(\text{Na}\)[/tex]) typically has an oxidation state of [tex]\(+1\)[/tex].
- Sulfur ([tex]\(\text{S}\)[/tex]) typically has an oxidation state of [tex]\(-2\)[/tex].
3. Copper sulfide ([tex]\(\text{CuS}\)[/tex]):
- Copper ([tex]\(\text{Cu}\)[/tex]) typically has an oxidation state of [tex]\(+2\)[/tex].
- Sulfur ([tex]\(\text{S}\)[/tex]) typically has an oxidation state of [tex]\(-2\)[/tex].
4. Sodium sulfate ([tex]\(\text{Na}_2\text{SO}_4\)[/tex]):
- Sodium ([tex]\(\text{Na}\)[/tex]) typically has an oxidation state of [tex]\(+1\)[/tex].
- Sulfate ion ([tex]\(\text{SO}_4^{2-}\)[/tex]) has [tex]\(+6\)[/tex] for sulfur and [tex]\(-2\)[/tex] for each oxygen (total charge of [tex]\(-2\)[/tex]).
Now, let’s compare the oxidation states of each element in the reactants and products:
- Copper ([tex]\(\text{Cu}\)[/tex]) remains [tex]\(+2\)[/tex] in both [tex]\(\text{CuSO}_4\)[/tex] and [tex]\(\text{CuS}\)[/tex].
- Sodium ([tex]\(\text{Na}\)[/tex]) remains [tex]\(+1\)[/tex] in both [tex]\(\text{Na}_2\text{S}\)[/tex] and [tex]\(\text{Na}_2\text{SO}_4\)[/tex].
- Sulfur ([tex]\(\text{S}\)[/tex]) in [tex]\(\text{Na}_2\text{S}\)[/tex] ([tex]\(-2\)[/tex]) changes to [tex]\(\text{CuS}\)[/tex] ([tex]\(-2\)[/tex]) and [tex]\(\text{SO}_4\)[/tex] ([tex]\(+6\)[/tex]) remains the same.
There is no change in oxidation states for copper, sodium, and sulfur between the reactants and the products. Since there is no change in the oxidation states, this means that there is no transfer of electrons, and therefore, this reaction is not a redox reaction.
Hence, the correct answer is:
D. This is not a redox reaction because no electrons were transferred.
Here's the reaction given:
[tex]\[ \text{CuSO}_4 + \text{Na}_2\text{S} \rightarrow \text{CuS} + \text{Na}_2\text{SO}_4 \][/tex]
Let's analyze the oxidation states of the elements in the reactants and products:
1. Copper sulfate ([tex]\(\text{CuSO}_4\)[/tex]):
- Copper ([tex]\(\text{Cu}\)[/tex]) typically has an oxidation state of [tex]\(+2\)[/tex].
- Sulfate ion ([tex]\(\text{SO}_4^{2-}\)[/tex]) has [tex]\(+6\)[/tex] for sulfur and [tex]\(-2\)[/tex] for each oxygen (total charge of [tex]\(-2\)[/tex]).
2. Sodium sulfide ([tex]\(\text{Na}_2\text{S}\)[/tex]):
- Sodium ([tex]\(\text{Na}\)[/tex]) typically has an oxidation state of [tex]\(+1\)[/tex].
- Sulfur ([tex]\(\text{S}\)[/tex]) typically has an oxidation state of [tex]\(-2\)[/tex].
3. Copper sulfide ([tex]\(\text{CuS}\)[/tex]):
- Copper ([tex]\(\text{Cu}\)[/tex]) typically has an oxidation state of [tex]\(+2\)[/tex].
- Sulfur ([tex]\(\text{S}\)[/tex]) typically has an oxidation state of [tex]\(-2\)[/tex].
4. Sodium sulfate ([tex]\(\text{Na}_2\text{SO}_4\)[/tex]):
- Sodium ([tex]\(\text{Na}\)[/tex]) typically has an oxidation state of [tex]\(+1\)[/tex].
- Sulfate ion ([tex]\(\text{SO}_4^{2-}\)[/tex]) has [tex]\(+6\)[/tex] for sulfur and [tex]\(-2\)[/tex] for each oxygen (total charge of [tex]\(-2\)[/tex]).
Now, let’s compare the oxidation states of each element in the reactants and products:
- Copper ([tex]\(\text{Cu}\)[/tex]) remains [tex]\(+2\)[/tex] in both [tex]\(\text{CuSO}_4\)[/tex] and [tex]\(\text{CuS}\)[/tex].
- Sodium ([tex]\(\text{Na}\)[/tex]) remains [tex]\(+1\)[/tex] in both [tex]\(\text{Na}_2\text{S}\)[/tex] and [tex]\(\text{Na}_2\text{SO}_4\)[/tex].
- Sulfur ([tex]\(\text{S}\)[/tex]) in [tex]\(\text{Na}_2\text{S}\)[/tex] ([tex]\(-2\)[/tex]) changes to [tex]\(\text{CuS}\)[/tex] ([tex]\(-2\)[/tex]) and [tex]\(\text{SO}_4\)[/tex] ([tex]\(+6\)[/tex]) remains the same.
There is no change in oxidation states for copper, sodium, and sulfur between the reactants and the products. Since there is no change in the oxidation states, this means that there is no transfer of electrons, and therefore, this reaction is not a redox reaction.
Hence, the correct answer is:
D. This is not a redox reaction because no electrons were transferred.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.