Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which fractions have a repeating decimal equivalent, we need to find out if the fraction in its simplest form results in a non-terminating, repeating decimal. A fraction [tex]\(\frac{a}{b}\)[/tex] is a terminating decimal if and only if in its simplest form, the denominator [tex]\(b\)[/tex] contains no prime factors other than 2 or 5. Conversely, if [tex]\(b\)[/tex] contains any prime factors other than 2 or 5, the fraction will have a repeating decimal.
Let's analyze each fraction step-by-step:
1. Fraction: [tex]\( \frac{13}{65} \)[/tex]
- Simplify the fraction:
[tex]\[ \text{gcd}(13, 65) = 13, \quad \frac{13 \div 13}{65 \div 13} = \frac{1}{5} \][/tex]
- The simplified denominator is 5, which contains only the prime factor 5.
- Therefore, [tex]\(\frac{13}{65}\)[/tex] is a terminating decimal.
2. Fraction: [tex]\( \frac{141}{47} \)[/tex]
- Simplify the fraction:
[tex]\[ \text{gcd}(141, 47) = 1, \quad \text{So, it is already in simplest form.} \][/tex]
- The denominator 47 contains the prime factor 47.
- Since 47 is neither 2 nor 5, this fraction will have a repeating decimal.
3. Fraction: [tex]\( \frac{11}{12} \)[/tex]
- Simplify the fraction:
[tex]\[ \text{gcd}(11, 12) = 1, \quad \text{So, it is already in simplest form.} \][/tex]
- The denominator 12 has prime factors [tex]\(2^2 \times 3\)[/tex].
- Since 12 contains a prime factor other than 2 or 5 (specifically 3), this fraction will have a repeating decimal.
4. Fraction: [tex]\( \frac{19}{3} \)[/tex]
- Simplify the fraction:
[tex]\[ \text{gcd}(19, 3) = 1, \quad \text{So, it is already in simplest form.} \][/tex]
- The denominator 3 contains the prime factor 3.
- Since 3 is not 2 or 5, this fraction will have a repeating decimal.
In summary, fractions [tex]\(\frac{141}{47}\)[/tex], [tex]\(\frac{11}{12}\)[/tex], and [tex]\(\frac{19}{3}\)[/tex] have repeating decimal equivalents. Therefore, the fractions that have repeating decimals are:
[tex]\[ \frac{11}{12}, \frac{19}{3} \][/tex]
Let's analyze each fraction step-by-step:
1. Fraction: [tex]\( \frac{13}{65} \)[/tex]
- Simplify the fraction:
[tex]\[ \text{gcd}(13, 65) = 13, \quad \frac{13 \div 13}{65 \div 13} = \frac{1}{5} \][/tex]
- The simplified denominator is 5, which contains only the prime factor 5.
- Therefore, [tex]\(\frac{13}{65}\)[/tex] is a terminating decimal.
2. Fraction: [tex]\( \frac{141}{47} \)[/tex]
- Simplify the fraction:
[tex]\[ \text{gcd}(141, 47) = 1, \quad \text{So, it is already in simplest form.} \][/tex]
- The denominator 47 contains the prime factor 47.
- Since 47 is neither 2 nor 5, this fraction will have a repeating decimal.
3. Fraction: [tex]\( \frac{11}{12} \)[/tex]
- Simplify the fraction:
[tex]\[ \text{gcd}(11, 12) = 1, \quad \text{So, it is already in simplest form.} \][/tex]
- The denominator 12 has prime factors [tex]\(2^2 \times 3\)[/tex].
- Since 12 contains a prime factor other than 2 or 5 (specifically 3), this fraction will have a repeating decimal.
4. Fraction: [tex]\( \frac{19}{3} \)[/tex]
- Simplify the fraction:
[tex]\[ \text{gcd}(19, 3) = 1, \quad \text{So, it is already in simplest form.} \][/tex]
- The denominator 3 contains the prime factor 3.
- Since 3 is not 2 or 5, this fraction will have a repeating decimal.
In summary, fractions [tex]\(\frac{141}{47}\)[/tex], [tex]\(\frac{11}{12}\)[/tex], and [tex]\(\frac{19}{3}\)[/tex] have repeating decimal equivalents. Therefore, the fractions that have repeating decimals are:
[tex]\[ \frac{11}{12}, \frac{19}{3} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.