At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Sure! Let's solve the problem step-by-step.
### Given Data:
- Mass of the body, [tex]\( m = 3.9 \)[/tex] kg
- Initial velocity at [tex]\( x = 1.6 \)[/tex] m, [tex]\( v_i = 10 \)[/tex] m/s
- Force component, [tex]\( F_x = -9x \)[/tex] N
- Initial position, [tex]\( x_i = 1.6 \)[/tex] m
### Part (a): Finding the velocity at [tex]\( x = 4.5 \)[/tex] m
1. Work-Energy Theorem: The work done by the force on the body as it moves from [tex]\( x_i \)[/tex] to [tex]\( x_f \)[/tex] equals the change in kinetic energy of the body.
2. Expression for Work Done: The work done by the force over a distance can be calculated using the formula:
[tex]\[ W = \int_{x_i}^{x_f} F_x \, dx \][/tex]
Given [tex]\( F_x = -9x \)[/tex], the work done [tex]\( W \)[/tex] from [tex]\( x_i = 1.6 \)[/tex] m to [tex]\( x_f = 4.5 \)[/tex] m is:
[tex]\[ W = \int_{1.6}^{4.5} (-9x) \, dx = -9 \int_{1.6}^{4.5} x \, dx \][/tex]
3. Solving the Integral:
[tex]\[ W = -9 \left[ \frac{x^2}{2} \right]_{1.6}^{4.5} = -9 \left( \frac{4.5^2}{2} - \frac{1.6^2}{2} \right) = -9 \left( \frac{20.25}{2} - \frac{2.56}{2} \right) = -9 \left( 10.125 - 1.28 \right) = -9 \times 8.845 = -79.605 \, \text{J} \][/tex]
4. Change in Kinetic Energy: According to the work-energy theorem:
[tex]\[ W = \Delta K = K_f - K_i \][/tex]
Initial kinetic energy [tex]\( K_i \)[/tex] is:
[tex]\[ K_i = \frac{1}{2} m v_i^2 = \frac{1}{2} \times 3.9 \times 10^2 = 195 \, \text{J} \][/tex]
Final kinetic energy [tex]\( K_f \)[/tex] is:
[tex]\[ K_f = K_i + W = 195 + (-79.605) = 115.395 \, \text{J} \][/tex]
5. Solving for Final Velocity:
[tex]\[ K_f = \frac{1}{2} m v_f^2 = 115.395 \][/tex]
[tex]\[ \frac{1}{2} \times 3.9 \times v_f^2 = 115.395 \][/tex]
[tex]\[ v_f^2 = \frac{115.395 \times 2}{3.9} = 59.1769 \][/tex]
[tex]\[ v_f = \sqrt{59.1769} \approx 7.69 \, \text{m/s} \][/tex]
So, the velocity of the body at [tex]\( x = 4.5 \)[/tex] m is approximately [tex]\( 7.69 \)[/tex] m/s.
### Part (b): Finding the position where the velocity is [tex]\( 3.1 \)[/tex] m/s
1. Final Kinetic Energy with [tex]\( v_f = 3.1 \)[/tex] m/s:
[tex]\[ K_f = \frac{1}{2} m v_f^2 = \frac{1}{2} \times 3.9 \times 3.1^2 = \frac{1}{2} \times 3.9 \times 9.61 = 18.7395 \, \text{J} \][/tex]
2. Work Done from [tex]\( x_i \)[/tex] to [tex]\( x_f \)[/tex]:
[tex]\[ W = \Delta K = K_f - K_i = 18.7395 - 195 = -176.2605 \, \text{J} \][/tex]
3. Solving for [tex]\( x \)[/tex]:
[tex]\[ W = \int_{1.6}^{x} (-9x) \, dx = -9 \left( \frac{x^2}{2} - \frac{1.6^2}{2} \right) \][/tex]
[tex]\[ -176.2605 = -9 \left( \frac{x^2}{2} - \frac{1.6^2}{2} \right) \][/tex]
Simplifying:
[tex]\[ -176.2605 = -4.5 \left( x^2 - 2.56 \right) \][/tex]
[tex]\[ 176.2605 = 4.5x^2 - 11.52 \][/tex]
[tex]\[ 187.7805 = 4.5x^2 \][/tex]
[tex]\[ x^2 = \frac{187.7805}{4.5} \approx 41.73 \][/tex]
[tex]\[ x = \sqrt{41.73} \approx 6.46 \, \text{m} \][/tex]
So, the position at which the body will have a velocity of [tex]\( 3.1 \)[/tex] m/s is approximately [tex]\( 6.46 \)[/tex] meters.
### Given Data:
- Mass of the body, [tex]\( m = 3.9 \)[/tex] kg
- Initial velocity at [tex]\( x = 1.6 \)[/tex] m, [tex]\( v_i = 10 \)[/tex] m/s
- Force component, [tex]\( F_x = -9x \)[/tex] N
- Initial position, [tex]\( x_i = 1.6 \)[/tex] m
### Part (a): Finding the velocity at [tex]\( x = 4.5 \)[/tex] m
1. Work-Energy Theorem: The work done by the force on the body as it moves from [tex]\( x_i \)[/tex] to [tex]\( x_f \)[/tex] equals the change in kinetic energy of the body.
2. Expression for Work Done: The work done by the force over a distance can be calculated using the formula:
[tex]\[ W = \int_{x_i}^{x_f} F_x \, dx \][/tex]
Given [tex]\( F_x = -9x \)[/tex], the work done [tex]\( W \)[/tex] from [tex]\( x_i = 1.6 \)[/tex] m to [tex]\( x_f = 4.5 \)[/tex] m is:
[tex]\[ W = \int_{1.6}^{4.5} (-9x) \, dx = -9 \int_{1.6}^{4.5} x \, dx \][/tex]
3. Solving the Integral:
[tex]\[ W = -9 \left[ \frac{x^2}{2} \right]_{1.6}^{4.5} = -9 \left( \frac{4.5^2}{2} - \frac{1.6^2}{2} \right) = -9 \left( \frac{20.25}{2} - \frac{2.56}{2} \right) = -9 \left( 10.125 - 1.28 \right) = -9 \times 8.845 = -79.605 \, \text{J} \][/tex]
4. Change in Kinetic Energy: According to the work-energy theorem:
[tex]\[ W = \Delta K = K_f - K_i \][/tex]
Initial kinetic energy [tex]\( K_i \)[/tex] is:
[tex]\[ K_i = \frac{1}{2} m v_i^2 = \frac{1}{2} \times 3.9 \times 10^2 = 195 \, \text{J} \][/tex]
Final kinetic energy [tex]\( K_f \)[/tex] is:
[tex]\[ K_f = K_i + W = 195 + (-79.605) = 115.395 \, \text{J} \][/tex]
5. Solving for Final Velocity:
[tex]\[ K_f = \frac{1}{2} m v_f^2 = 115.395 \][/tex]
[tex]\[ \frac{1}{2} \times 3.9 \times v_f^2 = 115.395 \][/tex]
[tex]\[ v_f^2 = \frac{115.395 \times 2}{3.9} = 59.1769 \][/tex]
[tex]\[ v_f = \sqrt{59.1769} \approx 7.69 \, \text{m/s} \][/tex]
So, the velocity of the body at [tex]\( x = 4.5 \)[/tex] m is approximately [tex]\( 7.69 \)[/tex] m/s.
### Part (b): Finding the position where the velocity is [tex]\( 3.1 \)[/tex] m/s
1. Final Kinetic Energy with [tex]\( v_f = 3.1 \)[/tex] m/s:
[tex]\[ K_f = \frac{1}{2} m v_f^2 = \frac{1}{2} \times 3.9 \times 3.1^2 = \frac{1}{2} \times 3.9 \times 9.61 = 18.7395 \, \text{J} \][/tex]
2. Work Done from [tex]\( x_i \)[/tex] to [tex]\( x_f \)[/tex]:
[tex]\[ W = \Delta K = K_f - K_i = 18.7395 - 195 = -176.2605 \, \text{J} \][/tex]
3. Solving for [tex]\( x \)[/tex]:
[tex]\[ W = \int_{1.6}^{x} (-9x) \, dx = -9 \left( \frac{x^2}{2} - \frac{1.6^2}{2} \right) \][/tex]
[tex]\[ -176.2605 = -9 \left( \frac{x^2}{2} - \frac{1.6^2}{2} \right) \][/tex]
Simplifying:
[tex]\[ -176.2605 = -4.5 \left( x^2 - 2.56 \right) \][/tex]
[tex]\[ 176.2605 = 4.5x^2 - 11.52 \][/tex]
[tex]\[ 187.7805 = 4.5x^2 \][/tex]
[tex]\[ x^2 = \frac{187.7805}{4.5} \approx 41.73 \][/tex]
[tex]\[ x = \sqrt{41.73} \approx 6.46 \, \text{m} \][/tex]
So, the position at which the body will have a velocity of [tex]\( 3.1 \)[/tex] m/s is approximately [tex]\( 6.46 \)[/tex] meters.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.