Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the work done by the force in moving the particle from [tex]\( x = 0 \)[/tex] to [tex]\( x = 2x_0 \)[/tex], we need to integrate the force function over the given displacement.
1. Understand the Force Function:
The force [tex]\( F \)[/tex] is given by:
[tex]\[ F(x) = F_0 \left( \frac{x}{x_0} - 1 \right) \][/tex]
Here, [tex]\( F_0 = 0.71 \, \text{N} \)[/tex] and [tex]\( x_0 = 2.5 \, \text{m} \)[/tex].
2. Set up the Integral for Work:
Work done by a force over a displacement is given by the integral of the force over that displacement. Thus, the work [tex]\( W \)[/tex] is:
[tex]\[ W = \int_{x_{\text{start}}}^{x_{\text{end}}} F(x) \, dx \][/tex]
Given [tex]\( x_{\text{start}} = 0 \)[/tex] and [tex]\( x_{\text{end}} = 2x_0 \)[/tex], we have:
[tex]\[ W = \int_{0}^{2x_0} F_0 \left( \frac{x}{x_0} - 1 \right) dx \][/tex]
Substituting [tex]\( F_0 \)[/tex] and [tex]\( x_0 \)[/tex] into the equation, we get:
[tex]\[ W = \int_{0}^{2 \cdot 2.5} 0.71 \left( \frac{x}{2.5} - 1 \right) dx \][/tex]
3. Simplify the Integral:
Simplify the integrand:
[tex]\[ W = 0.71 \int_{0}^{5} \left( \frac{x}{2.5} - 1 \right) dx \][/tex]
[tex]\[ = 0.71 \int_{0}^{5} \left( \frac{x}{2.5} - 1 \right) dx \][/tex]
[tex]\[ = 0.71 \left( \int_{0}^{5} \frac{x}{2.5} \, dx - \int_{0}^{5} 1 \, dx \right) \][/tex]
4. Evaluate the Integrals:
Evaluate each integral individually:
[tex]\[ \int_{0}^{5} \frac{x}{2.5} \, dx = \frac{1}{2.5} \int_{0}^{5} x \, dx = \frac{1}{2.5} \left[ \frac{x^2}{2} \right]_{0}^{5} = \frac{1}{2.5} \left( \frac{25}{2} - 0 \right) = \frac{25}{5} = 5 \][/tex]
[tex]\[ \int_{0}^{5} 1 \, dx = x \big|_{0}^{5} = 5 - 0 = 5 \][/tex]
5. Combine Results:
Substituting these results back into the expression for [tex]\( W \)[/tex]:
[tex]\[ W = 0.71 \left( 5 - 5 \right) = 0.71 \cdot 0 = 0 \][/tex]
Thus, the work done by the force in moving the particle from [tex]\( x = 0 \)[/tex] to [tex]\( x = 2x_0 \)[/tex] is extremely close to [tex]\( 0 \)[/tex] (numerically, it is [tex]\( 7.073458514357402 \times 10^{-17} \)[/tex] Joules), essentially confirming that the net work done is negligible (effectively zero in practical terms).
1. Understand the Force Function:
The force [tex]\( F \)[/tex] is given by:
[tex]\[ F(x) = F_0 \left( \frac{x}{x_0} - 1 \right) \][/tex]
Here, [tex]\( F_0 = 0.71 \, \text{N} \)[/tex] and [tex]\( x_0 = 2.5 \, \text{m} \)[/tex].
2. Set up the Integral for Work:
Work done by a force over a displacement is given by the integral of the force over that displacement. Thus, the work [tex]\( W \)[/tex] is:
[tex]\[ W = \int_{x_{\text{start}}}^{x_{\text{end}}} F(x) \, dx \][/tex]
Given [tex]\( x_{\text{start}} = 0 \)[/tex] and [tex]\( x_{\text{end}} = 2x_0 \)[/tex], we have:
[tex]\[ W = \int_{0}^{2x_0} F_0 \left( \frac{x}{x_0} - 1 \right) dx \][/tex]
Substituting [tex]\( F_0 \)[/tex] and [tex]\( x_0 \)[/tex] into the equation, we get:
[tex]\[ W = \int_{0}^{2 \cdot 2.5} 0.71 \left( \frac{x}{2.5} - 1 \right) dx \][/tex]
3. Simplify the Integral:
Simplify the integrand:
[tex]\[ W = 0.71 \int_{0}^{5} \left( \frac{x}{2.5} - 1 \right) dx \][/tex]
[tex]\[ = 0.71 \int_{0}^{5} \left( \frac{x}{2.5} - 1 \right) dx \][/tex]
[tex]\[ = 0.71 \left( \int_{0}^{5} \frac{x}{2.5} \, dx - \int_{0}^{5} 1 \, dx \right) \][/tex]
4. Evaluate the Integrals:
Evaluate each integral individually:
[tex]\[ \int_{0}^{5} \frac{x}{2.5} \, dx = \frac{1}{2.5} \int_{0}^{5} x \, dx = \frac{1}{2.5} \left[ \frac{x^2}{2} \right]_{0}^{5} = \frac{1}{2.5} \left( \frac{25}{2} - 0 \right) = \frac{25}{5} = 5 \][/tex]
[tex]\[ \int_{0}^{5} 1 \, dx = x \big|_{0}^{5} = 5 - 0 = 5 \][/tex]
5. Combine Results:
Substituting these results back into the expression for [tex]\( W \)[/tex]:
[tex]\[ W = 0.71 \left( 5 - 5 \right) = 0.71 \cdot 0 = 0 \][/tex]
Thus, the work done by the force in moving the particle from [tex]\( x = 0 \)[/tex] to [tex]\( x = 2x_0 \)[/tex] is extremely close to [tex]\( 0 \)[/tex] (numerically, it is [tex]\( 7.073458514357402 \times 10^{-17} \)[/tex] Joules), essentially confirming that the net work done is negligible (effectively zero in practical terms).
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.