Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the work done by the force in moving the particle from [tex]\( x = 0 \)[/tex] to [tex]\( x = 2x_0 \)[/tex], we need to integrate the force function over the given displacement.
1. Understand the Force Function:
The force [tex]\( F \)[/tex] is given by:
[tex]\[ F(x) = F_0 \left( \frac{x}{x_0} - 1 \right) \][/tex]
Here, [tex]\( F_0 = 0.71 \, \text{N} \)[/tex] and [tex]\( x_0 = 2.5 \, \text{m} \)[/tex].
2. Set up the Integral for Work:
Work done by a force over a displacement is given by the integral of the force over that displacement. Thus, the work [tex]\( W \)[/tex] is:
[tex]\[ W = \int_{x_{\text{start}}}^{x_{\text{end}}} F(x) \, dx \][/tex]
Given [tex]\( x_{\text{start}} = 0 \)[/tex] and [tex]\( x_{\text{end}} = 2x_0 \)[/tex], we have:
[tex]\[ W = \int_{0}^{2x_0} F_0 \left( \frac{x}{x_0} - 1 \right) dx \][/tex]
Substituting [tex]\( F_0 \)[/tex] and [tex]\( x_0 \)[/tex] into the equation, we get:
[tex]\[ W = \int_{0}^{2 \cdot 2.5} 0.71 \left( \frac{x}{2.5} - 1 \right) dx \][/tex]
3. Simplify the Integral:
Simplify the integrand:
[tex]\[ W = 0.71 \int_{0}^{5} \left( \frac{x}{2.5} - 1 \right) dx \][/tex]
[tex]\[ = 0.71 \int_{0}^{5} \left( \frac{x}{2.5} - 1 \right) dx \][/tex]
[tex]\[ = 0.71 \left( \int_{0}^{5} \frac{x}{2.5} \, dx - \int_{0}^{5} 1 \, dx \right) \][/tex]
4. Evaluate the Integrals:
Evaluate each integral individually:
[tex]\[ \int_{0}^{5} \frac{x}{2.5} \, dx = \frac{1}{2.5} \int_{0}^{5} x \, dx = \frac{1}{2.5} \left[ \frac{x^2}{2} \right]_{0}^{5} = \frac{1}{2.5} \left( \frac{25}{2} - 0 \right) = \frac{25}{5} = 5 \][/tex]
[tex]\[ \int_{0}^{5} 1 \, dx = x \big|_{0}^{5} = 5 - 0 = 5 \][/tex]
5. Combine Results:
Substituting these results back into the expression for [tex]\( W \)[/tex]:
[tex]\[ W = 0.71 \left( 5 - 5 \right) = 0.71 \cdot 0 = 0 \][/tex]
Thus, the work done by the force in moving the particle from [tex]\( x = 0 \)[/tex] to [tex]\( x = 2x_0 \)[/tex] is extremely close to [tex]\( 0 \)[/tex] (numerically, it is [tex]\( 7.073458514357402 \times 10^{-17} \)[/tex] Joules), essentially confirming that the net work done is negligible (effectively zero in practical terms).
1. Understand the Force Function:
The force [tex]\( F \)[/tex] is given by:
[tex]\[ F(x) = F_0 \left( \frac{x}{x_0} - 1 \right) \][/tex]
Here, [tex]\( F_0 = 0.71 \, \text{N} \)[/tex] and [tex]\( x_0 = 2.5 \, \text{m} \)[/tex].
2. Set up the Integral for Work:
Work done by a force over a displacement is given by the integral of the force over that displacement. Thus, the work [tex]\( W \)[/tex] is:
[tex]\[ W = \int_{x_{\text{start}}}^{x_{\text{end}}} F(x) \, dx \][/tex]
Given [tex]\( x_{\text{start}} = 0 \)[/tex] and [tex]\( x_{\text{end}} = 2x_0 \)[/tex], we have:
[tex]\[ W = \int_{0}^{2x_0} F_0 \left( \frac{x}{x_0} - 1 \right) dx \][/tex]
Substituting [tex]\( F_0 \)[/tex] and [tex]\( x_0 \)[/tex] into the equation, we get:
[tex]\[ W = \int_{0}^{2 \cdot 2.5} 0.71 \left( \frac{x}{2.5} - 1 \right) dx \][/tex]
3. Simplify the Integral:
Simplify the integrand:
[tex]\[ W = 0.71 \int_{0}^{5} \left( \frac{x}{2.5} - 1 \right) dx \][/tex]
[tex]\[ = 0.71 \int_{0}^{5} \left( \frac{x}{2.5} - 1 \right) dx \][/tex]
[tex]\[ = 0.71 \left( \int_{0}^{5} \frac{x}{2.5} \, dx - \int_{0}^{5} 1 \, dx \right) \][/tex]
4. Evaluate the Integrals:
Evaluate each integral individually:
[tex]\[ \int_{0}^{5} \frac{x}{2.5} \, dx = \frac{1}{2.5} \int_{0}^{5} x \, dx = \frac{1}{2.5} \left[ \frac{x^2}{2} \right]_{0}^{5} = \frac{1}{2.5} \left( \frac{25}{2} - 0 \right) = \frac{25}{5} = 5 \][/tex]
[tex]\[ \int_{0}^{5} 1 \, dx = x \big|_{0}^{5} = 5 - 0 = 5 \][/tex]
5. Combine Results:
Substituting these results back into the expression for [tex]\( W \)[/tex]:
[tex]\[ W = 0.71 \left( 5 - 5 \right) = 0.71 \cdot 0 = 0 \][/tex]
Thus, the work done by the force in moving the particle from [tex]\( x = 0 \)[/tex] to [tex]\( x = 2x_0 \)[/tex] is extremely close to [tex]\( 0 \)[/tex] (numerically, it is [tex]\( 7.073458514357402 \times 10^{-17} \)[/tex] Joules), essentially confirming that the net work done is negligible (effectively zero in practical terms).
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.