Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the system of equations
[tex]\[ \begin{cases} 6x + 5y = 88 \\ 5x + 6y = 88 \end{cases} \][/tex]
we'll use the method of elimination. Here's a step-by-step solution:
1. Label the equations:
[tex]\[ \begin{aligned} \text{Equation 1:} & \quad 6x + 5y = 88 \\ \text{Equation 2:} & \quad 5x + 6y = 88 \end{aligned} \][/tex]
2. Multiply Equation 1 by 5 and Equation 2 by 6 to make the coefficients of [tex]\(x\)[/tex] in both equations the same:
[tex]\[ \begin{aligned} 30x + 25y &= 440 \quad \text{(Equation 1 multiplied by 5)} \\ 30x + 36y &= 528 \quad \text{(Equation 2 multiplied by 6)} \end{aligned} \][/tex]
3. Subtract the first modified equation from the second modified equation to eliminate [tex]\(x\)[/tex]:
[tex]\[ (30x + 36y) - (30x + 25y) = 528 - 440 \][/tex]
Simplifying this, we get:
[tex]\[ 30x + 36y - 30x - 25y = 88 \][/tex]
Simplifying further:
[tex]\[ 11y = 88 \][/tex]
4. Solve for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{88}{11} = 8 \][/tex]
5. Substitute [tex]\(y = 8\)[/tex] back into one of the original equations to solve for [tex]\(x\)[/tex]:
Using Equation 1:
[tex]\[ 6x + 5(8) = 88 \][/tex]
Simplifying:
[tex]\[ 6x + 40 = 88 \][/tex]
[tex]\[ 6x = 88 - 40 \][/tex]
[tex]\[ 6x = 48 \][/tex]
[tex]\[ x = \frac{48}{6} = 8 \][/tex]
6. Thus, the solution to the system of equations is:
[tex]\[ (x, y) = (8, 8) \][/tex]
So, the solution to the system of equations is [tex]\((8, 8)\)[/tex].
[tex]\[ \begin{cases} 6x + 5y = 88 \\ 5x + 6y = 88 \end{cases} \][/tex]
we'll use the method of elimination. Here's a step-by-step solution:
1. Label the equations:
[tex]\[ \begin{aligned} \text{Equation 1:} & \quad 6x + 5y = 88 \\ \text{Equation 2:} & \quad 5x + 6y = 88 \end{aligned} \][/tex]
2. Multiply Equation 1 by 5 and Equation 2 by 6 to make the coefficients of [tex]\(x\)[/tex] in both equations the same:
[tex]\[ \begin{aligned} 30x + 25y &= 440 \quad \text{(Equation 1 multiplied by 5)} \\ 30x + 36y &= 528 \quad \text{(Equation 2 multiplied by 6)} \end{aligned} \][/tex]
3. Subtract the first modified equation from the second modified equation to eliminate [tex]\(x\)[/tex]:
[tex]\[ (30x + 36y) - (30x + 25y) = 528 - 440 \][/tex]
Simplifying this, we get:
[tex]\[ 30x + 36y - 30x - 25y = 88 \][/tex]
Simplifying further:
[tex]\[ 11y = 88 \][/tex]
4. Solve for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{88}{11} = 8 \][/tex]
5. Substitute [tex]\(y = 8\)[/tex] back into one of the original equations to solve for [tex]\(x\)[/tex]:
Using Equation 1:
[tex]\[ 6x + 5(8) = 88 \][/tex]
Simplifying:
[tex]\[ 6x + 40 = 88 \][/tex]
[tex]\[ 6x = 88 - 40 \][/tex]
[tex]\[ 6x = 48 \][/tex]
[tex]\[ x = \frac{48}{6} = 8 \][/tex]
6. Thus, the solution to the system of equations is:
[tex]\[ (x, y) = (8, 8) \][/tex]
So, the solution to the system of equations is [tex]\((8, 8)\)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.