Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the system of equations
[tex]\[ \begin{cases} 6x + 5y = 88 \\ 5x + 6y = 88 \end{cases} \][/tex]
we'll use the method of elimination. Here's a step-by-step solution:
1. Label the equations:
[tex]\[ \begin{aligned} \text{Equation 1:} & \quad 6x + 5y = 88 \\ \text{Equation 2:} & \quad 5x + 6y = 88 \end{aligned} \][/tex]
2. Multiply Equation 1 by 5 and Equation 2 by 6 to make the coefficients of [tex]\(x\)[/tex] in both equations the same:
[tex]\[ \begin{aligned} 30x + 25y &= 440 \quad \text{(Equation 1 multiplied by 5)} \\ 30x + 36y &= 528 \quad \text{(Equation 2 multiplied by 6)} \end{aligned} \][/tex]
3. Subtract the first modified equation from the second modified equation to eliminate [tex]\(x\)[/tex]:
[tex]\[ (30x + 36y) - (30x + 25y) = 528 - 440 \][/tex]
Simplifying this, we get:
[tex]\[ 30x + 36y - 30x - 25y = 88 \][/tex]
Simplifying further:
[tex]\[ 11y = 88 \][/tex]
4. Solve for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{88}{11} = 8 \][/tex]
5. Substitute [tex]\(y = 8\)[/tex] back into one of the original equations to solve for [tex]\(x\)[/tex]:
Using Equation 1:
[tex]\[ 6x + 5(8) = 88 \][/tex]
Simplifying:
[tex]\[ 6x + 40 = 88 \][/tex]
[tex]\[ 6x = 88 - 40 \][/tex]
[tex]\[ 6x = 48 \][/tex]
[tex]\[ x = \frac{48}{6} = 8 \][/tex]
6. Thus, the solution to the system of equations is:
[tex]\[ (x, y) = (8, 8) \][/tex]
So, the solution to the system of equations is [tex]\((8, 8)\)[/tex].
[tex]\[ \begin{cases} 6x + 5y = 88 \\ 5x + 6y = 88 \end{cases} \][/tex]
we'll use the method of elimination. Here's a step-by-step solution:
1. Label the equations:
[tex]\[ \begin{aligned} \text{Equation 1:} & \quad 6x + 5y = 88 \\ \text{Equation 2:} & \quad 5x + 6y = 88 \end{aligned} \][/tex]
2. Multiply Equation 1 by 5 and Equation 2 by 6 to make the coefficients of [tex]\(x\)[/tex] in both equations the same:
[tex]\[ \begin{aligned} 30x + 25y &= 440 \quad \text{(Equation 1 multiplied by 5)} \\ 30x + 36y &= 528 \quad \text{(Equation 2 multiplied by 6)} \end{aligned} \][/tex]
3. Subtract the first modified equation from the second modified equation to eliminate [tex]\(x\)[/tex]:
[tex]\[ (30x + 36y) - (30x + 25y) = 528 - 440 \][/tex]
Simplifying this, we get:
[tex]\[ 30x + 36y - 30x - 25y = 88 \][/tex]
Simplifying further:
[tex]\[ 11y = 88 \][/tex]
4. Solve for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{88}{11} = 8 \][/tex]
5. Substitute [tex]\(y = 8\)[/tex] back into one of the original equations to solve for [tex]\(x\)[/tex]:
Using Equation 1:
[tex]\[ 6x + 5(8) = 88 \][/tex]
Simplifying:
[tex]\[ 6x + 40 = 88 \][/tex]
[tex]\[ 6x = 88 - 40 \][/tex]
[tex]\[ 6x = 48 \][/tex]
[tex]\[ x = \frac{48}{6} = 8 \][/tex]
6. Thus, the solution to the system of equations is:
[tex]\[ (x, y) = (8, 8) \][/tex]
So, the solution to the system of equations is [tex]\((8, 8)\)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.