Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the missing [tex]\(x\)[/tex]-value and its corresponding Pythagorean triple for the given problem, we proceed as follows:
Given side lengths are [tex]\(x^2 - 1\)[/tex], [tex]\(2x\)[/tex], and [tex]\(x^2 + 1\)[/tex], and it is known that these form a right triangle.
1. Identify the missing [tex]\(x\)[/tex]-value and corresponding triple:
Let's check for an [tex]\(x\)[/tex]-value that gives a different triple from the ones provided in the question.
With [tex]\(x = 4\)[/tex], we calculate:
- [tex]\(t1 = x^2 - 1 = 4^2 - 1 = 16 - 1 = 15\)[/tex]
- [tex]\(t2 = 2x = 2 \cdot 4 = 8\)[/tex]
- [tex]\(t3 = x^2 + 1 = 4^2 + 1 = 16 + 1 = 17\)[/tex]
2. Sort the triple in ascending order:
The side lengths [tex]\(15\)[/tex], [tex]\(8\)[/tex], and [tex]\(17\)[/tex] are already in ascending order, so the Pythagorean triple is [tex]\( (8, 15, 17) \)[/tex].
3. Compile the results into the table:
The missing [tex]\(x\)[/tex]-value is [tex]\(4\)[/tex] and its corresponding triple is [tex]\( (8, 15, 17) \)[/tex].
Therefore, the completed table is:
\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex]-value & Pythagorean Triple \\
\hline
3 & (8, 15, 17) \\
\hline
5 & (8,15,17) \\
\hline
4 & (15,8,17) \\
\hline
\end{tabular}
Given side lengths are [tex]\(x^2 - 1\)[/tex], [tex]\(2x\)[/tex], and [tex]\(x^2 + 1\)[/tex], and it is known that these form a right triangle.
1. Identify the missing [tex]\(x\)[/tex]-value and corresponding triple:
Let's check for an [tex]\(x\)[/tex]-value that gives a different triple from the ones provided in the question.
With [tex]\(x = 4\)[/tex], we calculate:
- [tex]\(t1 = x^2 - 1 = 4^2 - 1 = 16 - 1 = 15\)[/tex]
- [tex]\(t2 = 2x = 2 \cdot 4 = 8\)[/tex]
- [tex]\(t3 = x^2 + 1 = 4^2 + 1 = 16 + 1 = 17\)[/tex]
2. Sort the triple in ascending order:
The side lengths [tex]\(15\)[/tex], [tex]\(8\)[/tex], and [tex]\(17\)[/tex] are already in ascending order, so the Pythagorean triple is [tex]\( (8, 15, 17) \)[/tex].
3. Compile the results into the table:
The missing [tex]\(x\)[/tex]-value is [tex]\(4\)[/tex] and its corresponding triple is [tex]\( (8, 15, 17) \)[/tex].
Therefore, the completed table is:
\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex]-value & Pythagorean Triple \\
\hline
3 & (8, 15, 17) \\
\hline
5 & (8,15,17) \\
\hline
4 & (15,8,17) \\
\hline
\end{tabular}
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.