Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the problem, we need to understand the properties of the parabola, given the directrix is the horizontal line [tex]\(y=3\)[/tex].
1. Determine the vertex of the parabola:
- For any parabola, the vertex lies halfway between the focus and the directrix.
- Since the directrix is [tex]\(y = 3\)[/tex], and assuming the vertex lies on the [tex]\(y\)[/tex]-axis, the vertex can be assumed to be at [tex]\((0,0)\)[/tex] without loss of generality.
2. Find the distance from the vertex to the directrix:
- The vertex [tex]\((0,0)\)[/tex] to the directrix [tex]\(y=3\)[/tex] is a distance of 3 units.
3. Determine the position of the focus:
- The focus will be symmetric to the directrix with respect to the vertex.
- Since the directrix is 3 units above the vertex at [tex]\((0,0)\)[/tex], the focus will be the same distance below the vertex.
- Thus, the focus is at [tex]\((0, -3)\)[/tex].
4. Identify the format and equation of the parabola:
- Given a vertex at [tex]\((0,0)\)[/tex] and the focus at [tex]\((0,-3)\)[/tex], the parabola opens downward.
- A downward-opening parabola with the vertex at the origin has the general equation [tex]\(x^2 = -4py\)[/tex], where [tex]\(p\)[/tex] is the distance from the vertex to the focus.
- Here, [tex]\(p = 3\)[/tex], so we get the equation [tex]\(x^2 = -4 \cdot 3 \cdot y = -12y\)[/tex].
So, the correct details about the parabola are:
- The focus is at [tex]\((0, -3)\)[/tex].
- The equation of the parabola is [tex]\(x^2 = -12y\)[/tex].
Thus, the correct option is:
"The focus is at [tex]\((0,-3)\)[/tex], and the equation for the parabola is [tex]\(x^2=-12y\)[/tex]."
1. Determine the vertex of the parabola:
- For any parabola, the vertex lies halfway between the focus and the directrix.
- Since the directrix is [tex]\(y = 3\)[/tex], and assuming the vertex lies on the [tex]\(y\)[/tex]-axis, the vertex can be assumed to be at [tex]\((0,0)\)[/tex] without loss of generality.
2. Find the distance from the vertex to the directrix:
- The vertex [tex]\((0,0)\)[/tex] to the directrix [tex]\(y=3\)[/tex] is a distance of 3 units.
3. Determine the position of the focus:
- The focus will be symmetric to the directrix with respect to the vertex.
- Since the directrix is 3 units above the vertex at [tex]\((0,0)\)[/tex], the focus will be the same distance below the vertex.
- Thus, the focus is at [tex]\((0, -3)\)[/tex].
4. Identify the format and equation of the parabola:
- Given a vertex at [tex]\((0,0)\)[/tex] and the focus at [tex]\((0,-3)\)[/tex], the parabola opens downward.
- A downward-opening parabola with the vertex at the origin has the general equation [tex]\(x^2 = -4py\)[/tex], where [tex]\(p\)[/tex] is the distance from the vertex to the focus.
- Here, [tex]\(p = 3\)[/tex], so we get the equation [tex]\(x^2 = -4 \cdot 3 \cdot y = -12y\)[/tex].
So, the correct details about the parabola are:
- The focus is at [tex]\((0, -3)\)[/tex].
- The equation of the parabola is [tex]\(x^2 = -12y\)[/tex].
Thus, the correct option is:
"The focus is at [tex]\((0,-3)\)[/tex], and the equation for the parabola is [tex]\(x^2=-12y\)[/tex]."
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.