Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the problem, we need to understand the properties of the parabola, given the directrix is the horizontal line [tex]\(y=3\)[/tex].
1. Determine the vertex of the parabola:
- For any parabola, the vertex lies halfway between the focus and the directrix.
- Since the directrix is [tex]\(y = 3\)[/tex], and assuming the vertex lies on the [tex]\(y\)[/tex]-axis, the vertex can be assumed to be at [tex]\((0,0)\)[/tex] without loss of generality.
2. Find the distance from the vertex to the directrix:
- The vertex [tex]\((0,0)\)[/tex] to the directrix [tex]\(y=3\)[/tex] is a distance of 3 units.
3. Determine the position of the focus:
- The focus will be symmetric to the directrix with respect to the vertex.
- Since the directrix is 3 units above the vertex at [tex]\((0,0)\)[/tex], the focus will be the same distance below the vertex.
- Thus, the focus is at [tex]\((0, -3)\)[/tex].
4. Identify the format and equation of the parabola:
- Given a vertex at [tex]\((0,0)\)[/tex] and the focus at [tex]\((0,-3)\)[/tex], the parabola opens downward.
- A downward-opening parabola with the vertex at the origin has the general equation [tex]\(x^2 = -4py\)[/tex], where [tex]\(p\)[/tex] is the distance from the vertex to the focus.
- Here, [tex]\(p = 3\)[/tex], so we get the equation [tex]\(x^2 = -4 \cdot 3 \cdot y = -12y\)[/tex].
So, the correct details about the parabola are:
- The focus is at [tex]\((0, -3)\)[/tex].
- The equation of the parabola is [tex]\(x^2 = -12y\)[/tex].
Thus, the correct option is:
"The focus is at [tex]\((0,-3)\)[/tex], and the equation for the parabola is [tex]\(x^2=-12y\)[/tex]."
1. Determine the vertex of the parabola:
- For any parabola, the vertex lies halfway between the focus and the directrix.
- Since the directrix is [tex]\(y = 3\)[/tex], and assuming the vertex lies on the [tex]\(y\)[/tex]-axis, the vertex can be assumed to be at [tex]\((0,0)\)[/tex] without loss of generality.
2. Find the distance from the vertex to the directrix:
- The vertex [tex]\((0,0)\)[/tex] to the directrix [tex]\(y=3\)[/tex] is a distance of 3 units.
3. Determine the position of the focus:
- The focus will be symmetric to the directrix with respect to the vertex.
- Since the directrix is 3 units above the vertex at [tex]\((0,0)\)[/tex], the focus will be the same distance below the vertex.
- Thus, the focus is at [tex]\((0, -3)\)[/tex].
4. Identify the format and equation of the parabola:
- Given a vertex at [tex]\((0,0)\)[/tex] and the focus at [tex]\((0,-3)\)[/tex], the parabola opens downward.
- A downward-opening parabola with the vertex at the origin has the general equation [tex]\(x^2 = -4py\)[/tex], where [tex]\(p\)[/tex] is the distance from the vertex to the focus.
- Here, [tex]\(p = 3\)[/tex], so we get the equation [tex]\(x^2 = -4 \cdot 3 \cdot y = -12y\)[/tex].
So, the correct details about the parabola are:
- The focus is at [tex]\((0, -3)\)[/tex].
- The equation of the parabola is [tex]\(x^2 = -12y\)[/tex].
Thus, the correct option is:
"The focus is at [tex]\((0,-3)\)[/tex], and the equation for the parabola is [tex]\(x^2=-12y\)[/tex]."
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.