Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Sure, let's go through the key features of the parabola given by the equation [tex]\( y^2 = 8x \)[/tex].
1. Vertex:
- The equation is in the form [tex]\( y^2 = 4px \)[/tex], where [tex]\( p \)[/tex] is a constant.
- For parabolas of the form [tex]\( y^2 = 4px \)[/tex], the vertex is located at the origin, [tex]\((0,0)\)[/tex].
Therefore, the vertex of the parabola [tex]\( y^2 = 8x \)[/tex] is at [tex]\((0, 0)\)[/tex].
2. Axis of Symmetry:
- For parabolas of the form [tex]\( y^2 = 4px \)[/tex], the axis of symmetry is the line along which the parabola is symmetrical.
- In this case, the parabola is symmetrical along the x-axis.
Thus, the axis of symmetry is the x-axis.
3. Focus:
- For parabolas of the form [tex]\( y^2 = 4px \)[/tex], the focus is located at [tex]\((p, 0)\)[/tex].
- Here, by comparing [tex]\( y^2 = 8x \)[/tex] with [tex]\( y^2 = 4px \)[/tex], we get [tex]\( 4p = 8 \)[/tex] which implies [tex]\( p = 2 \)[/tex].
- Therefore, the focus of the parabola [tex]\( y^2 = 8x \)[/tex] is at the point [tex]\((2, 0)\)[/tex].
So, the focus is at [tex]\((2, 0)\)[/tex].
4. Directrix:
- For parabolas of the form [tex]\( y^2 = 4px \)[/tex], the directrix is a line given by [tex]\( x = -p \)[/tex].
- Given [tex]\( p = 2 \)[/tex] from earlier, the directrix is the line [tex]\( x = -2 \)[/tex].
Thus, the directrix of the parabola is [tex]\( x = -2 \)[/tex].
5. Direction of Opening:
- For the parabola [tex]\( y^2 = 8x \)[/tex], the coefficient of [tex]\( x \)[/tex] is positive.
- For parabolas in the form [tex]\( y^2 = 4px \)[/tex] where [tex]\( p > 0 \)[/tex], they open to the right.
Therefore, the direction of opening is to the right.
Summarizing all the key features:
- The vertex is [tex]\((0, 0)\)[/tex].
- The axis of symmetry is the x-axis.
- The focus is at [tex]\((2, 0)\)[/tex].
- The directrix is [tex]\( x = -2 \)[/tex].
- The parabola opens to the right.
1. Vertex:
- The equation is in the form [tex]\( y^2 = 4px \)[/tex], where [tex]\( p \)[/tex] is a constant.
- For parabolas of the form [tex]\( y^2 = 4px \)[/tex], the vertex is located at the origin, [tex]\((0,0)\)[/tex].
Therefore, the vertex of the parabola [tex]\( y^2 = 8x \)[/tex] is at [tex]\((0, 0)\)[/tex].
2. Axis of Symmetry:
- For parabolas of the form [tex]\( y^2 = 4px \)[/tex], the axis of symmetry is the line along which the parabola is symmetrical.
- In this case, the parabola is symmetrical along the x-axis.
Thus, the axis of symmetry is the x-axis.
3. Focus:
- For parabolas of the form [tex]\( y^2 = 4px \)[/tex], the focus is located at [tex]\((p, 0)\)[/tex].
- Here, by comparing [tex]\( y^2 = 8x \)[/tex] with [tex]\( y^2 = 4px \)[/tex], we get [tex]\( 4p = 8 \)[/tex] which implies [tex]\( p = 2 \)[/tex].
- Therefore, the focus of the parabola [tex]\( y^2 = 8x \)[/tex] is at the point [tex]\((2, 0)\)[/tex].
So, the focus is at [tex]\((2, 0)\)[/tex].
4. Directrix:
- For parabolas of the form [tex]\( y^2 = 4px \)[/tex], the directrix is a line given by [tex]\( x = -p \)[/tex].
- Given [tex]\( p = 2 \)[/tex] from earlier, the directrix is the line [tex]\( x = -2 \)[/tex].
Thus, the directrix of the parabola is [tex]\( x = -2 \)[/tex].
5. Direction of Opening:
- For the parabola [tex]\( y^2 = 8x \)[/tex], the coefficient of [tex]\( x \)[/tex] is positive.
- For parabolas in the form [tex]\( y^2 = 4px \)[/tex] where [tex]\( p > 0 \)[/tex], they open to the right.
Therefore, the direction of opening is to the right.
Summarizing all the key features:
- The vertex is [tex]\((0, 0)\)[/tex].
- The axis of symmetry is the x-axis.
- The focus is at [tex]\((2, 0)\)[/tex].
- The directrix is [tex]\( x = -2 \)[/tex].
- The parabola opens to the right.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.