Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the inequality [tex]\(-4y + 6 < -14\)[/tex], let's go through the steps one by one.
1. Write the inequality:
[tex]\[ -4y + 6 < -14 \][/tex]
2. Isolate the term with [tex]\( y \)[/tex]:
Start by subtracting 6 from both sides to remove the constant term on the left-hand side:
[tex]\[ -4y + 6 - 6 < -14 - 6 \][/tex]
Simplifying this, we get:
[tex]\[ -4y < -20 \][/tex]
3. Solve for [tex]\( y \)[/tex]:
Now, we need to isolate [tex]\( y \)[/tex] by dividing both sides of the inequality by [tex]\(-4\)[/tex]. Remember, when we divide or multiply an inequality by a negative number, we must reverse the inequality sign:
[tex]\[ \frac{-4y}{-4} > \frac{-20}{-4} \][/tex]
Simplifying this, we get:
[tex]\[ y > 5 \][/tex]
4. Write the solution in interval notation:
The solution means that [tex]\( y \)[/tex] must be greater than 5. In interval notation, this is written as:
[tex]\[ (5, \infty) \][/tex]
Thus, the correct answer to the inequality [tex]\(-4y + 6 < -14\)[/tex] is:
[tex]\[ \boxed{C. \; y > 5} \][/tex]
1. Write the inequality:
[tex]\[ -4y + 6 < -14 \][/tex]
2. Isolate the term with [tex]\( y \)[/tex]:
Start by subtracting 6 from both sides to remove the constant term on the left-hand side:
[tex]\[ -4y + 6 - 6 < -14 - 6 \][/tex]
Simplifying this, we get:
[tex]\[ -4y < -20 \][/tex]
3. Solve for [tex]\( y \)[/tex]:
Now, we need to isolate [tex]\( y \)[/tex] by dividing both sides of the inequality by [tex]\(-4\)[/tex]. Remember, when we divide or multiply an inequality by a negative number, we must reverse the inequality sign:
[tex]\[ \frac{-4y}{-4} > \frac{-20}{-4} \][/tex]
Simplifying this, we get:
[tex]\[ y > 5 \][/tex]
4. Write the solution in interval notation:
The solution means that [tex]\( y \)[/tex] must be greater than 5. In interval notation, this is written as:
[tex]\[ (5, \infty) \][/tex]
Thus, the correct answer to the inequality [tex]\(-4y + 6 < -14\)[/tex] is:
[tex]\[ \boxed{C. \; y > 5} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.