Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Solve the inequality [tex]-4y + 6 \ \textless \ -14[/tex].

A. [tex]y \ \textgreater \ 2[/tex]

B. [tex]y \ \textless \ 5[/tex]

C. [tex]y \ \textgreater \ 5[/tex]

D. [tex]y \leq 5[/tex]


Sagot :

To solve the inequality [tex]\(-4y + 6 < -14\)[/tex], let's go through the steps one by one.

1. Write the inequality:
[tex]\[ -4y + 6 < -14 \][/tex]

2. Isolate the term with [tex]\( y \)[/tex]:
Start by subtracting 6 from both sides to remove the constant term on the left-hand side:
[tex]\[ -4y + 6 - 6 < -14 - 6 \][/tex]
Simplifying this, we get:
[tex]\[ -4y < -20 \][/tex]

3. Solve for [tex]\( y \)[/tex]:
Now, we need to isolate [tex]\( y \)[/tex] by dividing both sides of the inequality by [tex]\(-4\)[/tex]. Remember, when we divide or multiply an inequality by a negative number, we must reverse the inequality sign:
[tex]\[ \frac{-4y}{-4} > \frac{-20}{-4} \][/tex]
Simplifying this, we get:
[tex]\[ y > 5 \][/tex]

4. Write the solution in interval notation:
The solution means that [tex]\( y \)[/tex] must be greater than 5. In interval notation, this is written as:
[tex]\[ (5, \infty) \][/tex]

Thus, the correct answer to the inequality [tex]\(-4y + 6 < -14\)[/tex] is:
[tex]\[ \boxed{C. \; y > 5} \][/tex]