Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let’s address each part of the question step by step.
### 1. Which set is the complement to set [tex]\( B \)[/tex]?
Set [tex]\( B \)[/tex] contains all even integers. The complement of set [tex]\( B \)[/tex] ([tex]\(\overline{B}\)[/tex]) consists of all elements in the universe [tex]\( U \)[/tex] (all integers) that are not in [tex]\( B \)[/tex]. These would be all the odd integers. Therefore:
[tex]\[ \overline{B} = \{x \mid x \in U \text{ and } x \text{ is odd} \} \][/tex]
Hence, the complement to set [tex]\( B \)[/tex] is:
[tex]\[ \overline{B} = \{1, 3, 5, 7, \ldots, -3, -1, -997, -999, \text{etc.}\} \][/tex]
### 2. Which set is an empty set?
To identify which set is empty, we examine the definitions of the sets given:
- [tex]\(A\)[/tex] contains integers greater than 3.
- [tex]\(B\)[/tex] contains even integers.
- [tex]\(C\)[/tex] contains integers [tex]\( x \)[/tex] such that [tex]\( 2x \)[/tex] is odd. Notice that [tex]\( 2x \)[/tex] is always even for any integer [tex]\( x \)[/tex], hence [tex]\( 2x \)[/tex] cannot be odd. This implies that there is no such [tex]\( x \)[/tex], making set [tex]\( C \)[/tex] empty.
- [tex]\(D\)[/tex] contains odd integers.
Therefore, set [tex]\( C \)[/tex] is:
[tex]\[ C = \emptyset \][/tex]
### 3. Which set would contain the subset [tex]\( E = \{1, 3, 5, 7\} \)[/tex]?
Subset [tex]\( E \)[/tex] includes the integers 1, 3, 5, and 7. These integers are all odd. Therefore, we look for a set among [tex]\( A, B, C, D \)[/tex] that contains all odd integers. We can see:
- [tex]\( A \)[/tex] contains integers greater than 3, which does include some of the elements in [tex]\( E \)[/tex] (namely, 5 and 7), but not all of them.
- [tex]\( B \)[/tex] contains even integers, which does not include any element of [tex]\( E \)[/tex].
- [tex]\( C \)[/tex] is empty, hence it does not contain [tex]\( E \)[/tex].
- [tex]\( D \)[/tex] contains all odd integers, which would include all elements of [tex]\( E \)[/tex].
Thus, the set [tex]\( D \)[/tex] contains the subset [tex]\( E \)[/tex]:
[tex]\[ D \supseteq \{1, 3, 5, 7\} \][/tex]
### Summary
1. The complement to set [tex]\( B \)[/tex] is:
[tex]\[ \{1, 3, 5, 7, \ldots, -3, -1, -997, -999, \text{etc.}\} \][/tex]
2. The empty set is:
[tex]\[ C = \emptyset \][/tex]
3. The set containing the subset [tex]\( E = \{1, 3, 5, 7\} \)[/tex] is:
[tex]\[ D \][/tex]
### 1. Which set is the complement to set [tex]\( B \)[/tex]?
Set [tex]\( B \)[/tex] contains all even integers. The complement of set [tex]\( B \)[/tex] ([tex]\(\overline{B}\)[/tex]) consists of all elements in the universe [tex]\( U \)[/tex] (all integers) that are not in [tex]\( B \)[/tex]. These would be all the odd integers. Therefore:
[tex]\[ \overline{B} = \{x \mid x \in U \text{ and } x \text{ is odd} \} \][/tex]
Hence, the complement to set [tex]\( B \)[/tex] is:
[tex]\[ \overline{B} = \{1, 3, 5, 7, \ldots, -3, -1, -997, -999, \text{etc.}\} \][/tex]
### 2. Which set is an empty set?
To identify which set is empty, we examine the definitions of the sets given:
- [tex]\(A\)[/tex] contains integers greater than 3.
- [tex]\(B\)[/tex] contains even integers.
- [tex]\(C\)[/tex] contains integers [tex]\( x \)[/tex] such that [tex]\( 2x \)[/tex] is odd. Notice that [tex]\( 2x \)[/tex] is always even for any integer [tex]\( x \)[/tex], hence [tex]\( 2x \)[/tex] cannot be odd. This implies that there is no such [tex]\( x \)[/tex], making set [tex]\( C \)[/tex] empty.
- [tex]\(D\)[/tex] contains odd integers.
Therefore, set [tex]\( C \)[/tex] is:
[tex]\[ C = \emptyset \][/tex]
### 3. Which set would contain the subset [tex]\( E = \{1, 3, 5, 7\} \)[/tex]?
Subset [tex]\( E \)[/tex] includes the integers 1, 3, 5, and 7. These integers are all odd. Therefore, we look for a set among [tex]\( A, B, C, D \)[/tex] that contains all odd integers. We can see:
- [tex]\( A \)[/tex] contains integers greater than 3, which does include some of the elements in [tex]\( E \)[/tex] (namely, 5 and 7), but not all of them.
- [tex]\( B \)[/tex] contains even integers, which does not include any element of [tex]\( E \)[/tex].
- [tex]\( C \)[/tex] is empty, hence it does not contain [tex]\( E \)[/tex].
- [tex]\( D \)[/tex] contains all odd integers, which would include all elements of [tex]\( E \)[/tex].
Thus, the set [tex]\( D \)[/tex] contains the subset [tex]\( E \)[/tex]:
[tex]\[ D \supseteq \{1, 3, 5, 7\} \][/tex]
### Summary
1. The complement to set [tex]\( B \)[/tex] is:
[tex]\[ \{1, 3, 5, 7, \ldots, -3, -1, -997, -999, \text{etc.}\} \][/tex]
2. The empty set is:
[tex]\[ C = \emptyset \][/tex]
3. The set containing the subset [tex]\( E = \{1, 3, 5, 7\} \)[/tex] is:
[tex]\[ D \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.