Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the problem of representing the heights of the two hot air balloons after a certain number of minutes using a system of equations, let's analyze the given conditions step-by-step:
1. First Balloon:
- Initial height: 3,000 feet.
- Descending at a rate of 40 feet per minute.
Therefore, the height [tex]\( h_1 \)[/tex] of the first balloon after [tex]\( m \)[/tex] minutes can be represented by the equation:
[tex]\[ h_1 = 3000 - 40m \][/tex]
2. Second Balloon:
- Initial height: 1,200 feet.
- Rising at a rate of 50 feet per minute.
Therefore, the height [tex]\( h_2 \)[/tex] of the second balloon after [tex]\( m \)[/tex] minutes can be represented by the equation:
[tex]\[ h_2 = 1200 + 50m \][/tex]
Based on these representations, we need to identify which system of equations (from the provided options) correctly matches the equations we derived:
- Option A:
[tex]\[ \begin{array}{l} h = 3000 - 40m \\ h = 1200 + 50m \end{array} \][/tex]
This matches our derived equations perfectly.
- Option B:
[tex]\[ \begin{array}{l} m = 3000 - 40h \\ m = 1200 + 50h \end{array} \][/tex]
These equations incorrectly use [tex]\( h \)[/tex] and [tex]\( m \)[/tex] interchanged and have the wrong functional forms.
- Option C:
[tex]\[ h = 3000m - 40 \\ h = 1200m + 50 \][/tex]
These equations incorrectly place [tex]\( m \)[/tex] in a position to be multiplied by the initial heights, which is incorrect.
- Option D:
[tex]\[ \begin{array}{l} h = 3000 + 40m \\ h = 1200 - 50m \end{array} \][/tex]
These equations indicate the wrong directions for the changes in height.
After evaluating all the options, we see that the correct system of equations is given in Option A. Therefore, the correct choice is:
1
1. First Balloon:
- Initial height: 3,000 feet.
- Descending at a rate of 40 feet per minute.
Therefore, the height [tex]\( h_1 \)[/tex] of the first balloon after [tex]\( m \)[/tex] minutes can be represented by the equation:
[tex]\[ h_1 = 3000 - 40m \][/tex]
2. Second Balloon:
- Initial height: 1,200 feet.
- Rising at a rate of 50 feet per minute.
Therefore, the height [tex]\( h_2 \)[/tex] of the second balloon after [tex]\( m \)[/tex] minutes can be represented by the equation:
[tex]\[ h_2 = 1200 + 50m \][/tex]
Based on these representations, we need to identify which system of equations (from the provided options) correctly matches the equations we derived:
- Option A:
[tex]\[ \begin{array}{l} h = 3000 - 40m \\ h = 1200 + 50m \end{array} \][/tex]
This matches our derived equations perfectly.
- Option B:
[tex]\[ \begin{array}{l} m = 3000 - 40h \\ m = 1200 + 50h \end{array} \][/tex]
These equations incorrectly use [tex]\( h \)[/tex] and [tex]\( m \)[/tex] interchanged and have the wrong functional forms.
- Option C:
[tex]\[ h = 3000m - 40 \\ h = 1200m + 50 \][/tex]
These equations incorrectly place [tex]\( m \)[/tex] in a position to be multiplied by the initial heights, which is incorrect.
- Option D:
[tex]\[ \begin{array}{l} h = 3000 + 40m \\ h = 1200 - 50m \end{array} \][/tex]
These equations indicate the wrong directions for the changes in height.
After evaluating all the options, we see that the correct system of equations is given in Option A. Therefore, the correct choice is:
1
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.