Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To simplify the expression [tex]\(\sin(A) \tan(A) + \cos(A)\)[/tex] into an expression involving only [tex]\(\sin(A)\)[/tex] or [tex]\(\cos(A)\)[/tex], we can follow these steps:
1. Recall the trigonometric identity for [tex]\(\tan(A)\)[/tex]:
[tex]\[ \tan(A) = \frac{\sin(A)}{\cos(A)} \][/tex]
2. Substitute [tex]\(\tan(A)\)[/tex] into the given expression:
[tex]\[ \sin(A) \tan(A) + \cos(A) = \sin(A) \left( \frac{\sin(A)}{\cos(A)} \right) + \cos(A) \][/tex]
3. Simplify the first term:
[tex]\[ \sin(A) \left( \frac{\sin(A)}{\cos(A)} \right) = \frac{\sin^2(A)}{\cos(A)} \][/tex]
4. So the expression now is:
[tex]\[ \frac{\sin^2(A)}{\cos(A)} + \cos(A) \][/tex]
5. To combine these terms, we need a common denominator:
[tex]\[ \frac{\sin^2(A)}{\cos(A)} + \frac{\cos^2(A)}{\cos(A)} \][/tex]
6. Combine the fractions:
[tex]\[ \frac{\sin^2(A) + \cos^2(A)}{\cos(A)} \][/tex]
7. Use the Pythagorean identity, which states that:
[tex]\[ \sin^2(A) + \cos^2(A) = 1 \][/tex]
8. Substitute [tex]\(1\)[/tex] for [tex]\(\sin^2(A) + \cos^2(A)\)[/tex] in the expression:
[tex]\[ \frac{1}{\cos(A)} \][/tex]
Thus, the simplified expression is:
[tex]\[ \frac{1}{\cos(A)} \][/tex]
1. Recall the trigonometric identity for [tex]\(\tan(A)\)[/tex]:
[tex]\[ \tan(A) = \frac{\sin(A)}{\cos(A)} \][/tex]
2. Substitute [tex]\(\tan(A)\)[/tex] into the given expression:
[tex]\[ \sin(A) \tan(A) + \cos(A) = \sin(A) \left( \frac{\sin(A)}{\cos(A)} \right) + \cos(A) \][/tex]
3. Simplify the first term:
[tex]\[ \sin(A) \left( \frac{\sin(A)}{\cos(A)} \right) = \frac{\sin^2(A)}{\cos(A)} \][/tex]
4. So the expression now is:
[tex]\[ \frac{\sin^2(A)}{\cos(A)} + \cos(A) \][/tex]
5. To combine these terms, we need a common denominator:
[tex]\[ \frac{\sin^2(A)}{\cos(A)} + \frac{\cos^2(A)}{\cos(A)} \][/tex]
6. Combine the fractions:
[tex]\[ \frac{\sin^2(A) + \cos^2(A)}{\cos(A)} \][/tex]
7. Use the Pythagorean identity, which states that:
[tex]\[ \sin^2(A) + \cos^2(A) = 1 \][/tex]
8. Substitute [tex]\(1\)[/tex] for [tex]\(\sin^2(A) + \cos^2(A)\)[/tex] in the expression:
[tex]\[ \frac{1}{\cos(A)} \][/tex]
Thus, the simplified expression is:
[tex]\[ \frac{1}{\cos(A)} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.