Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the rule describing the transformation, we need to analyze how each point [tex]\( (x, y) \)[/tex] is transformed into its new position [tex]\( (x', y') \)[/tex]. Specifically, since we are looking at dilation, we need to find the dilation factor.
Given points:
[tex]\[ E(-2,-1), F(-1,1), G(2,0) \][/tex]
Transformed points:
[tex]\[ E'(-5,-2.5), F'(-2.5,2.5), G'(5,0) \][/tex]
### Step-by-Step Solution:
#### Step 1: Understand the Concept of Dilation
Dilation is a transformation that produces an image that is the same shape as the original, but is resized by a scale factor. The scale factor, [tex]\( k \)[/tex], is the ratio of a coordinate of the image to the corresponding coordinate of the pre-image.
#### Step 2: Calculate the Scale Factor for Each Point
1. Calculate the scale factor using point [tex]\( E \)[/tex] and [tex]\( E' \)[/tex]:
[tex]\[ k_E = \frac{E_x'}{E_x} = \frac{-5}{-2} = 2.5 \quad \text{and} \quad k_E = \frac{E_y'}{E_y} = \frac{-2.5}{-1} = 2.5 \][/tex]
Both [tex]\( k_E \)[/tex] values are equal to 2.5.
2. Calculate the scale factor using point [tex]\( F \)[/tex] and [tex]\( F' \)[/tex]:
[tex]\[ k_F = \frac{F_x'}{F_x} = \frac{-2.5}{-1} = 2.5 \quad \text{and} \quad k_F = \frac{F_y'}{F_y} = \frac{2.5}{1} = 2.5 \][/tex]
Both [tex]\( k_F \)[/tex] values are equal to 2.5.
3. Calculate the scale factor using point [tex]\( G \)[/tex] and [tex]\( G' \)[/tex]:
[tex]\[ k_G = \frac{G_x'}{G_x} = \frac{5}{2} = 2.5 \quad \text{and} \quad k_G = \frac{G_y'}{G_y} = \frac{0}{0} \][/tex]
Since [tex]\( G_y = 0 \)[/tex] and [tex]\( G_y' = 0 \)[/tex], this part is not useful for calculating the scale factor, but [tex]\( k_G \)[/tex] for [tex]\( x \)[/tex]-coordinates confirms that it is 2.5.
#### Step 3: Conclusion
Since all computed dilation factors for the respective points are consistent, we conclude that the dilation factor is [tex]\( 2.5 \)[/tex].
Therefore, the correct answer is:
[tex]\[ \text{Dilation of } 2.5 \][/tex]
Given points:
[tex]\[ E(-2,-1), F(-1,1), G(2,0) \][/tex]
Transformed points:
[tex]\[ E'(-5,-2.5), F'(-2.5,2.5), G'(5,0) \][/tex]
### Step-by-Step Solution:
#### Step 1: Understand the Concept of Dilation
Dilation is a transformation that produces an image that is the same shape as the original, but is resized by a scale factor. The scale factor, [tex]\( k \)[/tex], is the ratio of a coordinate of the image to the corresponding coordinate of the pre-image.
#### Step 2: Calculate the Scale Factor for Each Point
1. Calculate the scale factor using point [tex]\( E \)[/tex] and [tex]\( E' \)[/tex]:
[tex]\[ k_E = \frac{E_x'}{E_x} = \frac{-5}{-2} = 2.5 \quad \text{and} \quad k_E = \frac{E_y'}{E_y} = \frac{-2.5}{-1} = 2.5 \][/tex]
Both [tex]\( k_E \)[/tex] values are equal to 2.5.
2. Calculate the scale factor using point [tex]\( F \)[/tex] and [tex]\( F' \)[/tex]:
[tex]\[ k_F = \frac{F_x'}{F_x} = \frac{-2.5}{-1} = 2.5 \quad \text{and} \quad k_F = \frac{F_y'}{F_y} = \frac{2.5}{1} = 2.5 \][/tex]
Both [tex]\( k_F \)[/tex] values are equal to 2.5.
3. Calculate the scale factor using point [tex]\( G \)[/tex] and [tex]\( G' \)[/tex]:
[tex]\[ k_G = \frac{G_x'}{G_x} = \frac{5}{2} = 2.5 \quad \text{and} \quad k_G = \frac{G_y'}{G_y} = \frac{0}{0} \][/tex]
Since [tex]\( G_y = 0 \)[/tex] and [tex]\( G_y' = 0 \)[/tex], this part is not useful for calculating the scale factor, but [tex]\( k_G \)[/tex] for [tex]\( x \)[/tex]-coordinates confirms that it is 2.5.
#### Step 3: Conclusion
Since all computed dilation factors for the respective points are consistent, we conclude that the dilation factor is [tex]\( 2.5 \)[/tex].
Therefore, the correct answer is:
[tex]\[ \text{Dilation of } 2.5 \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.