Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine how long it will take for the tranquilizer to decay to 89% of its original dosage, we can use the exponential decay model:
[tex]\[ A = A_0 e^{kt} \][/tex]
Here:
- [tex]\( A_0 \)[/tex] is the original amount of the tranquilizer.
- [tex]\( A \)[/tex] is the remaining amount after time [tex]\( t \)[/tex].
- [tex]\( k \)[/tex] is the decay constant.
- [tex]\( t \)[/tex] is the time.
Given:
- The half-life of the tranquilizer is 34 hours.
- The remaining percentage of the tranquilizer is 89% of the original dosage, which translates to [tex]\( A = 0.89 A_0 \)[/tex].
### Step 1: Determine the decay constant [tex]\( k \)[/tex]
At the half-life, the remaining amount is half of the original amount ([tex]\( A = \frac{A_0}{2} \)[/tex]) after 34 hours. Thus:
[tex]\[ \frac{A_0}{2} = A_0 e^{k \times 34} \][/tex]
Divide both sides by [tex]\( A_0 \)[/tex]:
[tex]\[ \frac{1}{2} = e^{k \times 34} \][/tex]
Take the natural logarithm of both sides to solve for [tex]\( k \)[/tex]:
[tex]\[ \ln\left(\frac{1}{2}\right) = k \times 34 \][/tex]
Since [tex]\( \ln\left(\frac{1}{2}\right) = \ln(1) - \ln(2) = -\ln(2) \)[/tex], we have:
[tex]\[ k \times 34 = -\ln(2) \][/tex]
Thus,
[tex]\[ k = \frac{-\ln(2)}{34} \][/tex]
### Step 2: Determine the time [tex]\( t \)[/tex] for the drug to decay to 89% of the original dosage
We now need to find [tex]\( t \)[/tex] for [tex]\( A = 0.89 A_0 \)[/tex]:
[tex]\[ 0.89 A_0 = A_0 e^{k \times t} \][/tex]
Divide both sides by [tex]\( A_0 \)[/tex]:
[tex]\[ 0.89 = e^{k \times t} \][/tex]
Take the natural logarithm of both sides to solve for [tex]\( t \)[/tex]:
[tex]\[ \ln(0.89) = k \times t \][/tex]
Substitute [tex]\( k \)[/tex] from Step 1:
[tex]\[ \ln(0.89) = \left(\frac{-\ln(2)}{34}\right) \times t \][/tex]
Solving for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{\ln(0.89)}{\frac{-\ln(2)}{34}} \][/tex]
### Step 3: Simplify and find the numerical value
[tex]\[ t = \frac{\ln(0.89) \times 34}{-\ln(2)} \][/tex]
### Step 4: Calculate
Using a calculator for the logarithms:
- [tex]\( \ln(0.89) \approx -0.1165 \)[/tex]
- [tex]\( \ln(2) \approx 0.6931 \)[/tex]
Therefore,
[tex]\[ t = \frac{-0.1165 \times 34}{-0.6931} \][/tex]
[tex]\[ t \approx \frac{-3.961}{-0.6931} \][/tex]
[tex]\[ t \approx 5.716 \][/tex]
### Step 5: Round to the nearest tenth
Rounding to one decimal place:
[tex]\[ t \approx 5.7 \][/tex]
So, it will take approximately [tex]\( \boxed{5.7} \)[/tex] hours for the drug to decay to 89% of its original dosage.
[tex]\[ A = A_0 e^{kt} \][/tex]
Here:
- [tex]\( A_0 \)[/tex] is the original amount of the tranquilizer.
- [tex]\( A \)[/tex] is the remaining amount after time [tex]\( t \)[/tex].
- [tex]\( k \)[/tex] is the decay constant.
- [tex]\( t \)[/tex] is the time.
Given:
- The half-life of the tranquilizer is 34 hours.
- The remaining percentage of the tranquilizer is 89% of the original dosage, which translates to [tex]\( A = 0.89 A_0 \)[/tex].
### Step 1: Determine the decay constant [tex]\( k \)[/tex]
At the half-life, the remaining amount is half of the original amount ([tex]\( A = \frac{A_0}{2} \)[/tex]) after 34 hours. Thus:
[tex]\[ \frac{A_0}{2} = A_0 e^{k \times 34} \][/tex]
Divide both sides by [tex]\( A_0 \)[/tex]:
[tex]\[ \frac{1}{2} = e^{k \times 34} \][/tex]
Take the natural logarithm of both sides to solve for [tex]\( k \)[/tex]:
[tex]\[ \ln\left(\frac{1}{2}\right) = k \times 34 \][/tex]
Since [tex]\( \ln\left(\frac{1}{2}\right) = \ln(1) - \ln(2) = -\ln(2) \)[/tex], we have:
[tex]\[ k \times 34 = -\ln(2) \][/tex]
Thus,
[tex]\[ k = \frac{-\ln(2)}{34} \][/tex]
### Step 2: Determine the time [tex]\( t \)[/tex] for the drug to decay to 89% of the original dosage
We now need to find [tex]\( t \)[/tex] for [tex]\( A = 0.89 A_0 \)[/tex]:
[tex]\[ 0.89 A_0 = A_0 e^{k \times t} \][/tex]
Divide both sides by [tex]\( A_0 \)[/tex]:
[tex]\[ 0.89 = e^{k \times t} \][/tex]
Take the natural logarithm of both sides to solve for [tex]\( t \)[/tex]:
[tex]\[ \ln(0.89) = k \times t \][/tex]
Substitute [tex]\( k \)[/tex] from Step 1:
[tex]\[ \ln(0.89) = \left(\frac{-\ln(2)}{34}\right) \times t \][/tex]
Solving for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{\ln(0.89)}{\frac{-\ln(2)}{34}} \][/tex]
### Step 3: Simplify and find the numerical value
[tex]\[ t = \frac{\ln(0.89) \times 34}{-\ln(2)} \][/tex]
### Step 4: Calculate
Using a calculator for the logarithms:
- [tex]\( \ln(0.89) \approx -0.1165 \)[/tex]
- [tex]\( \ln(2) \approx 0.6931 \)[/tex]
Therefore,
[tex]\[ t = \frac{-0.1165 \times 34}{-0.6931} \][/tex]
[tex]\[ t \approx \frac{-3.961}{-0.6931} \][/tex]
[tex]\[ t \approx 5.716 \][/tex]
### Step 5: Round to the nearest tenth
Rounding to one decimal place:
[tex]\[ t \approx 5.7 \][/tex]
So, it will take approximately [tex]\( \boxed{5.7} \)[/tex] hours for the drug to decay to 89% of its original dosage.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.