Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine how long it will take for the tranquilizer to decay to 89% of its original dosage, we can use the exponential decay model:
[tex]\[ A = A_0 e^{kt} \][/tex]
Here:
- [tex]\( A_0 \)[/tex] is the original amount of the tranquilizer.
- [tex]\( A \)[/tex] is the remaining amount after time [tex]\( t \)[/tex].
- [tex]\( k \)[/tex] is the decay constant.
- [tex]\( t \)[/tex] is the time.
Given:
- The half-life of the tranquilizer is 34 hours.
- The remaining percentage of the tranquilizer is 89% of the original dosage, which translates to [tex]\( A = 0.89 A_0 \)[/tex].
### Step 1: Determine the decay constant [tex]\( k \)[/tex]
At the half-life, the remaining amount is half of the original amount ([tex]\( A = \frac{A_0}{2} \)[/tex]) after 34 hours. Thus:
[tex]\[ \frac{A_0}{2} = A_0 e^{k \times 34} \][/tex]
Divide both sides by [tex]\( A_0 \)[/tex]:
[tex]\[ \frac{1}{2} = e^{k \times 34} \][/tex]
Take the natural logarithm of both sides to solve for [tex]\( k \)[/tex]:
[tex]\[ \ln\left(\frac{1}{2}\right) = k \times 34 \][/tex]
Since [tex]\( \ln\left(\frac{1}{2}\right) = \ln(1) - \ln(2) = -\ln(2) \)[/tex], we have:
[tex]\[ k \times 34 = -\ln(2) \][/tex]
Thus,
[tex]\[ k = \frac{-\ln(2)}{34} \][/tex]
### Step 2: Determine the time [tex]\( t \)[/tex] for the drug to decay to 89% of the original dosage
We now need to find [tex]\( t \)[/tex] for [tex]\( A = 0.89 A_0 \)[/tex]:
[tex]\[ 0.89 A_0 = A_0 e^{k \times t} \][/tex]
Divide both sides by [tex]\( A_0 \)[/tex]:
[tex]\[ 0.89 = e^{k \times t} \][/tex]
Take the natural logarithm of both sides to solve for [tex]\( t \)[/tex]:
[tex]\[ \ln(0.89) = k \times t \][/tex]
Substitute [tex]\( k \)[/tex] from Step 1:
[tex]\[ \ln(0.89) = \left(\frac{-\ln(2)}{34}\right) \times t \][/tex]
Solving for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{\ln(0.89)}{\frac{-\ln(2)}{34}} \][/tex]
### Step 3: Simplify and find the numerical value
[tex]\[ t = \frac{\ln(0.89) \times 34}{-\ln(2)} \][/tex]
### Step 4: Calculate
Using a calculator for the logarithms:
- [tex]\( \ln(0.89) \approx -0.1165 \)[/tex]
- [tex]\( \ln(2) \approx 0.6931 \)[/tex]
Therefore,
[tex]\[ t = \frac{-0.1165 \times 34}{-0.6931} \][/tex]
[tex]\[ t \approx \frac{-3.961}{-0.6931} \][/tex]
[tex]\[ t \approx 5.716 \][/tex]
### Step 5: Round to the nearest tenth
Rounding to one decimal place:
[tex]\[ t \approx 5.7 \][/tex]
So, it will take approximately [tex]\( \boxed{5.7} \)[/tex] hours for the drug to decay to 89% of its original dosage.
[tex]\[ A = A_0 e^{kt} \][/tex]
Here:
- [tex]\( A_0 \)[/tex] is the original amount of the tranquilizer.
- [tex]\( A \)[/tex] is the remaining amount after time [tex]\( t \)[/tex].
- [tex]\( k \)[/tex] is the decay constant.
- [tex]\( t \)[/tex] is the time.
Given:
- The half-life of the tranquilizer is 34 hours.
- The remaining percentage of the tranquilizer is 89% of the original dosage, which translates to [tex]\( A = 0.89 A_0 \)[/tex].
### Step 1: Determine the decay constant [tex]\( k \)[/tex]
At the half-life, the remaining amount is half of the original amount ([tex]\( A = \frac{A_0}{2} \)[/tex]) after 34 hours. Thus:
[tex]\[ \frac{A_0}{2} = A_0 e^{k \times 34} \][/tex]
Divide both sides by [tex]\( A_0 \)[/tex]:
[tex]\[ \frac{1}{2} = e^{k \times 34} \][/tex]
Take the natural logarithm of both sides to solve for [tex]\( k \)[/tex]:
[tex]\[ \ln\left(\frac{1}{2}\right) = k \times 34 \][/tex]
Since [tex]\( \ln\left(\frac{1}{2}\right) = \ln(1) - \ln(2) = -\ln(2) \)[/tex], we have:
[tex]\[ k \times 34 = -\ln(2) \][/tex]
Thus,
[tex]\[ k = \frac{-\ln(2)}{34} \][/tex]
### Step 2: Determine the time [tex]\( t \)[/tex] for the drug to decay to 89% of the original dosage
We now need to find [tex]\( t \)[/tex] for [tex]\( A = 0.89 A_0 \)[/tex]:
[tex]\[ 0.89 A_0 = A_0 e^{k \times t} \][/tex]
Divide both sides by [tex]\( A_0 \)[/tex]:
[tex]\[ 0.89 = e^{k \times t} \][/tex]
Take the natural logarithm of both sides to solve for [tex]\( t \)[/tex]:
[tex]\[ \ln(0.89) = k \times t \][/tex]
Substitute [tex]\( k \)[/tex] from Step 1:
[tex]\[ \ln(0.89) = \left(\frac{-\ln(2)}{34}\right) \times t \][/tex]
Solving for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{\ln(0.89)}{\frac{-\ln(2)}{34}} \][/tex]
### Step 3: Simplify and find the numerical value
[tex]\[ t = \frac{\ln(0.89) \times 34}{-\ln(2)} \][/tex]
### Step 4: Calculate
Using a calculator for the logarithms:
- [tex]\( \ln(0.89) \approx -0.1165 \)[/tex]
- [tex]\( \ln(2) \approx 0.6931 \)[/tex]
Therefore,
[tex]\[ t = \frac{-0.1165 \times 34}{-0.6931} \][/tex]
[tex]\[ t \approx \frac{-3.961}{-0.6931} \][/tex]
[tex]\[ t \approx 5.716 \][/tex]
### Step 5: Round to the nearest tenth
Rounding to one decimal place:
[tex]\[ t \approx 5.7 \][/tex]
So, it will take approximately [tex]\( \boxed{5.7} \)[/tex] hours for the drug to decay to 89% of its original dosage.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.