Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Ask your questions and receive precise answers from experienced professionals across different disciplines. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine how long it will take for the tranquilizer to decay to 89% of its original dosage, we can use the exponential decay model:
[tex]\[ A = A_0 e^{kt} \][/tex]
Here:
- [tex]\( A_0 \)[/tex] is the original amount of the tranquilizer.
- [tex]\( A \)[/tex] is the remaining amount after time [tex]\( t \)[/tex].
- [tex]\( k \)[/tex] is the decay constant.
- [tex]\( t \)[/tex] is the time.
Given:
- The half-life of the tranquilizer is 34 hours.
- The remaining percentage of the tranquilizer is 89% of the original dosage, which translates to [tex]\( A = 0.89 A_0 \)[/tex].
### Step 1: Determine the decay constant [tex]\( k \)[/tex]
At the half-life, the remaining amount is half of the original amount ([tex]\( A = \frac{A_0}{2} \)[/tex]) after 34 hours. Thus:
[tex]\[ \frac{A_0}{2} = A_0 e^{k \times 34} \][/tex]
Divide both sides by [tex]\( A_0 \)[/tex]:
[tex]\[ \frac{1}{2} = e^{k \times 34} \][/tex]
Take the natural logarithm of both sides to solve for [tex]\( k \)[/tex]:
[tex]\[ \ln\left(\frac{1}{2}\right) = k \times 34 \][/tex]
Since [tex]\( \ln\left(\frac{1}{2}\right) = \ln(1) - \ln(2) = -\ln(2) \)[/tex], we have:
[tex]\[ k \times 34 = -\ln(2) \][/tex]
Thus,
[tex]\[ k = \frac{-\ln(2)}{34} \][/tex]
### Step 2: Determine the time [tex]\( t \)[/tex] for the drug to decay to 89% of the original dosage
We now need to find [tex]\( t \)[/tex] for [tex]\( A = 0.89 A_0 \)[/tex]:
[tex]\[ 0.89 A_0 = A_0 e^{k \times t} \][/tex]
Divide both sides by [tex]\( A_0 \)[/tex]:
[tex]\[ 0.89 = e^{k \times t} \][/tex]
Take the natural logarithm of both sides to solve for [tex]\( t \)[/tex]:
[tex]\[ \ln(0.89) = k \times t \][/tex]
Substitute [tex]\( k \)[/tex] from Step 1:
[tex]\[ \ln(0.89) = \left(\frac{-\ln(2)}{34}\right) \times t \][/tex]
Solving for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{\ln(0.89)}{\frac{-\ln(2)}{34}} \][/tex]
### Step 3: Simplify and find the numerical value
[tex]\[ t = \frac{\ln(0.89) \times 34}{-\ln(2)} \][/tex]
### Step 4: Calculate
Using a calculator for the logarithms:
- [tex]\( \ln(0.89) \approx -0.1165 \)[/tex]
- [tex]\( \ln(2) \approx 0.6931 \)[/tex]
Therefore,
[tex]\[ t = \frac{-0.1165 \times 34}{-0.6931} \][/tex]
[tex]\[ t \approx \frac{-3.961}{-0.6931} \][/tex]
[tex]\[ t \approx 5.716 \][/tex]
### Step 5: Round to the nearest tenth
Rounding to one decimal place:
[tex]\[ t \approx 5.7 \][/tex]
So, it will take approximately [tex]\( \boxed{5.7} \)[/tex] hours for the drug to decay to 89% of its original dosage.
[tex]\[ A = A_0 e^{kt} \][/tex]
Here:
- [tex]\( A_0 \)[/tex] is the original amount of the tranquilizer.
- [tex]\( A \)[/tex] is the remaining amount after time [tex]\( t \)[/tex].
- [tex]\( k \)[/tex] is the decay constant.
- [tex]\( t \)[/tex] is the time.
Given:
- The half-life of the tranquilizer is 34 hours.
- The remaining percentage of the tranquilizer is 89% of the original dosage, which translates to [tex]\( A = 0.89 A_0 \)[/tex].
### Step 1: Determine the decay constant [tex]\( k \)[/tex]
At the half-life, the remaining amount is half of the original amount ([tex]\( A = \frac{A_0}{2} \)[/tex]) after 34 hours. Thus:
[tex]\[ \frac{A_0}{2} = A_0 e^{k \times 34} \][/tex]
Divide both sides by [tex]\( A_0 \)[/tex]:
[tex]\[ \frac{1}{2} = e^{k \times 34} \][/tex]
Take the natural logarithm of both sides to solve for [tex]\( k \)[/tex]:
[tex]\[ \ln\left(\frac{1}{2}\right) = k \times 34 \][/tex]
Since [tex]\( \ln\left(\frac{1}{2}\right) = \ln(1) - \ln(2) = -\ln(2) \)[/tex], we have:
[tex]\[ k \times 34 = -\ln(2) \][/tex]
Thus,
[tex]\[ k = \frac{-\ln(2)}{34} \][/tex]
### Step 2: Determine the time [tex]\( t \)[/tex] for the drug to decay to 89% of the original dosage
We now need to find [tex]\( t \)[/tex] for [tex]\( A = 0.89 A_0 \)[/tex]:
[tex]\[ 0.89 A_0 = A_0 e^{k \times t} \][/tex]
Divide both sides by [tex]\( A_0 \)[/tex]:
[tex]\[ 0.89 = e^{k \times t} \][/tex]
Take the natural logarithm of both sides to solve for [tex]\( t \)[/tex]:
[tex]\[ \ln(0.89) = k \times t \][/tex]
Substitute [tex]\( k \)[/tex] from Step 1:
[tex]\[ \ln(0.89) = \left(\frac{-\ln(2)}{34}\right) \times t \][/tex]
Solving for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{\ln(0.89)}{\frac{-\ln(2)}{34}} \][/tex]
### Step 3: Simplify and find the numerical value
[tex]\[ t = \frac{\ln(0.89) \times 34}{-\ln(2)} \][/tex]
### Step 4: Calculate
Using a calculator for the logarithms:
- [tex]\( \ln(0.89) \approx -0.1165 \)[/tex]
- [tex]\( \ln(2) \approx 0.6931 \)[/tex]
Therefore,
[tex]\[ t = \frac{-0.1165 \times 34}{-0.6931} \][/tex]
[tex]\[ t \approx \frac{-3.961}{-0.6931} \][/tex]
[tex]\[ t \approx 5.716 \][/tex]
### Step 5: Round to the nearest tenth
Rounding to one decimal place:
[tex]\[ t \approx 5.7 \][/tex]
So, it will take approximately [tex]\( \boxed{5.7} \)[/tex] hours for the drug to decay to 89% of its original dosage.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.