Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine how many different three-digit numbers can be formed using the digits from the set {2, 3, 4, 5, 6} without any repeating digits, we use the concept of permutations. Here's a step-by-step approach to solve this problem:
1. Identify the total number of digits available:
The set provided is {2, 3, 4, 5, 6}, which contains 5 distinct digits.
2. Recognize the requirement for the three-digit number:
We need to form numbers using exactly 3 of these 5 digits.
3. Apply the permutation formula:
When forming a sequence where order matters and no repeats are allowed, it's a permutation. The number of permutations of 5 digits taken 3 at a time is given by the formula:
[tex]\[ P(n, r) = \frac{n!}{(n - r)!} \][/tex]
where [tex]\( n \)[/tex] is the total number of items to choose from and [tex]\( r \)[/tex] is the number of items to choose.
4. Substitute the values into the formula:
Here, [tex]\( n = 5 \)[/tex] (total available digits) and [tex]\( r = 3 \)[/tex] (digits to choose).
[tex]\[ P(5, 3) = \frac{5!}{(5 - 3)!} = \frac{5!}{2!} \][/tex]
5. Calculate the factorial values:
- [tex]\( 5! = 5 \times 4 \times 3 \times 2 \times 1 = 120 \)[/tex]
- [tex]\( 2! = 2 \times 1 = 2 \)[/tex]
6. Divide the factorial values to find the number of permutations:
[tex]\[ P(5, 3) = \frac{120}{2} = 60 \][/tex]
Therefore, the number of different three-digit numbers that can be written using the digits from the set {2, 3, 4, 5, 6} without any repeating digits is [tex]\( \boxed{60} \)[/tex].
1. Identify the total number of digits available:
The set provided is {2, 3, 4, 5, 6}, which contains 5 distinct digits.
2. Recognize the requirement for the three-digit number:
We need to form numbers using exactly 3 of these 5 digits.
3. Apply the permutation formula:
When forming a sequence where order matters and no repeats are allowed, it's a permutation. The number of permutations of 5 digits taken 3 at a time is given by the formula:
[tex]\[ P(n, r) = \frac{n!}{(n - r)!} \][/tex]
where [tex]\( n \)[/tex] is the total number of items to choose from and [tex]\( r \)[/tex] is the number of items to choose.
4. Substitute the values into the formula:
Here, [tex]\( n = 5 \)[/tex] (total available digits) and [tex]\( r = 3 \)[/tex] (digits to choose).
[tex]\[ P(5, 3) = \frac{5!}{(5 - 3)!} = \frac{5!}{2!} \][/tex]
5. Calculate the factorial values:
- [tex]\( 5! = 5 \times 4 \times 3 \times 2 \times 1 = 120 \)[/tex]
- [tex]\( 2! = 2 \times 1 = 2 \)[/tex]
6. Divide the factorial values to find the number of permutations:
[tex]\[ P(5, 3) = \frac{120}{2} = 60 \][/tex]
Therefore, the number of different three-digit numbers that can be written using the digits from the set {2, 3, 4, 5, 6} without any repeating digits is [tex]\( \boxed{60} \)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.