Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine how many different three-digit numbers can be formed using the digits from the set {2, 3, 4, 5, 6} without any repeating digits, we use the concept of permutations. Here's a step-by-step approach to solve this problem:
1. Identify the total number of digits available:
The set provided is {2, 3, 4, 5, 6}, which contains 5 distinct digits.
2. Recognize the requirement for the three-digit number:
We need to form numbers using exactly 3 of these 5 digits.
3. Apply the permutation formula:
When forming a sequence where order matters and no repeats are allowed, it's a permutation. The number of permutations of 5 digits taken 3 at a time is given by the formula:
[tex]\[ P(n, r) = \frac{n!}{(n - r)!} \][/tex]
where [tex]\( n \)[/tex] is the total number of items to choose from and [tex]\( r \)[/tex] is the number of items to choose.
4. Substitute the values into the formula:
Here, [tex]\( n = 5 \)[/tex] (total available digits) and [tex]\( r = 3 \)[/tex] (digits to choose).
[tex]\[ P(5, 3) = \frac{5!}{(5 - 3)!} = \frac{5!}{2!} \][/tex]
5. Calculate the factorial values:
- [tex]\( 5! = 5 \times 4 \times 3 \times 2 \times 1 = 120 \)[/tex]
- [tex]\( 2! = 2 \times 1 = 2 \)[/tex]
6. Divide the factorial values to find the number of permutations:
[tex]\[ P(5, 3) = \frac{120}{2} = 60 \][/tex]
Therefore, the number of different three-digit numbers that can be written using the digits from the set {2, 3, 4, 5, 6} without any repeating digits is [tex]\( \boxed{60} \)[/tex].
1. Identify the total number of digits available:
The set provided is {2, 3, 4, 5, 6}, which contains 5 distinct digits.
2. Recognize the requirement for the three-digit number:
We need to form numbers using exactly 3 of these 5 digits.
3. Apply the permutation formula:
When forming a sequence where order matters and no repeats are allowed, it's a permutation. The number of permutations of 5 digits taken 3 at a time is given by the formula:
[tex]\[ P(n, r) = \frac{n!}{(n - r)!} \][/tex]
where [tex]\( n \)[/tex] is the total number of items to choose from and [tex]\( r \)[/tex] is the number of items to choose.
4. Substitute the values into the formula:
Here, [tex]\( n = 5 \)[/tex] (total available digits) and [tex]\( r = 3 \)[/tex] (digits to choose).
[tex]\[ P(5, 3) = \frac{5!}{(5 - 3)!} = \frac{5!}{2!} \][/tex]
5. Calculate the factorial values:
- [tex]\( 5! = 5 \times 4 \times 3 \times 2 \times 1 = 120 \)[/tex]
- [tex]\( 2! = 2 \times 1 = 2 \)[/tex]
6. Divide the factorial values to find the number of permutations:
[tex]\[ P(5, 3) = \frac{120}{2} = 60 \][/tex]
Therefore, the number of different three-digit numbers that can be written using the digits from the set {2, 3, 4, 5, 6} without any repeating digits is [tex]\( \boxed{60} \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.