At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine a reasonable domain for the function [tex]\( f(x) = 2^x \)[/tex] given that the total area covered by the bacteria is limited to [tex]\( 256 \, \text{mm}^2 \)[/tex], follow these steps:
1. Recognize that the function [tex]\( f(x) = 2^x \)[/tex] represents exponential growth. This means the area covered by the bacteria increases exponentially as [tex]\( x \)[/tex], the number of days, increases.
2. The bacterial culture stops growing when it covers a total area of [tex]\( 256 \, \text{mm}^2 \)[/tex]. Therefore, we need to determine the value of [tex]\( x \)[/tex] such that [tex]\( 2^x \)[/tex] does not exceed [tex]\( 256 \)[/tex].
3. To find the maximum value of [tex]\( x \)[/tex] that satisfies the condition [tex]\( 2^x \leq 256 \)[/tex], we observe that:
[tex]\[ 2^8 = 256 \][/tex]
This implies that [tex]\( x \)[/tex] can be up to 8 days long where the function [tex]\( f(x) \)[/tex] reaches the maximum allowable area of [tex]\( 256 \, \text{mm}^2 \)[/tex].
4. Therefore, a reasonable domain for the function must ensure that the bacterial growth stays within the range and does not exceed the petri dish area. This domain can be expressed as:
[tex]\[ 0 < x \leq 8 \][/tex]
Given the answer choices, the correct domain that ensures the bacterial culture covers an area within [tex]\( 256 \, \text{mm}^2 \)[/tex] is:
D [tex]\( 0 < x \leq 8 \)[/tex]
1. Recognize that the function [tex]\( f(x) = 2^x \)[/tex] represents exponential growth. This means the area covered by the bacteria increases exponentially as [tex]\( x \)[/tex], the number of days, increases.
2. The bacterial culture stops growing when it covers a total area of [tex]\( 256 \, \text{mm}^2 \)[/tex]. Therefore, we need to determine the value of [tex]\( x \)[/tex] such that [tex]\( 2^x \)[/tex] does not exceed [tex]\( 256 \)[/tex].
3. To find the maximum value of [tex]\( x \)[/tex] that satisfies the condition [tex]\( 2^x \leq 256 \)[/tex], we observe that:
[tex]\[ 2^8 = 256 \][/tex]
This implies that [tex]\( x \)[/tex] can be up to 8 days long where the function [tex]\( f(x) \)[/tex] reaches the maximum allowable area of [tex]\( 256 \, \text{mm}^2 \)[/tex].
4. Therefore, a reasonable domain for the function must ensure that the bacterial growth stays within the range and does not exceed the petri dish area. This domain can be expressed as:
[tex]\[ 0 < x \leq 8 \][/tex]
Given the answer choices, the correct domain that ensures the bacterial culture covers an area within [tex]\( 256 \, \text{mm}^2 \)[/tex] is:
D [tex]\( 0 < x \leq 8 \)[/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.