Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the probability of obtaining tails up at least two times when a fair coin is flipped seven times, we'll approach the problem step-by-step using properties of binomial distributions.
### Step 1: Define the Parameters
- n: Number of trials (coin flips) = 7
- p: Probability of success (getting tails in a single flip) = 0.5
### Step 2: Find the Complement
Instead of directly calculating the probability of getting at least two tails, we will find the complement, which is the probability of getting fewer than two tails (i.e., 0 or 1 tail), and then subtract that from 1.
### Step 3: Calculate the Probability of Getting 0 Tails
The probability of getting 0 tails in 7 trials can be determined by:
[tex]\[ P(X = 0) = \binom{7}{0} (0.5)^0 (0.5)^7 = 1 \cdot 1 \cdot (0.5)^7 = 0.5^7 = \frac{1}{128} \approx 0.0078125 \][/tex]
### Step 4: Calculate the Probability of Getting 1 Tail
The probability of getting exactly 1 tail in 7 trials can be determined by:
[tex]\[ P(X = 1) = \binom{7}{1} (0.5)^1 (0.5)^6 = 7 \cdot 0.5 \cdot (0.5)^6 = 7 \cdot 0.5 \cdot \frac{1}{64} = \frac{7}{128} \approx 0.0546875 \][/tex]
### Step 5: Add the Probabilities of Getting 0 or 1 Tail
[tex]\[ P(X < 2) = P(X = 0) + P(X = 1) \][/tex]
[tex]\[ P(X < 2) = 0.0078125 + 0.0546875 = 0.0625 \][/tex]
### Step 6: Find the Probability of Getting At Least 2 Tails
The probability of getting at least 2 tails is the complement of getting fewer than 2 tails:
[tex]\[ P(X \geq 2) = 1 - P(X < 2) \][/tex]
[tex]\[ P(X \geq 2) = 1 - 0.0625 = 0.9375 \][/tex]
### Step 7: Convert the Probability to Fraction
Since 0.9375 is equivalent to the fraction representation:
[tex]\[ 0.9375 = \frac{15}{16} \][/tex]
Therefore, the answer is:
B. [tex]\(\boxed{\frac{15}{16}}\)[/tex]
### Step 1: Define the Parameters
- n: Number of trials (coin flips) = 7
- p: Probability of success (getting tails in a single flip) = 0.5
### Step 2: Find the Complement
Instead of directly calculating the probability of getting at least two tails, we will find the complement, which is the probability of getting fewer than two tails (i.e., 0 or 1 tail), and then subtract that from 1.
### Step 3: Calculate the Probability of Getting 0 Tails
The probability of getting 0 tails in 7 trials can be determined by:
[tex]\[ P(X = 0) = \binom{7}{0} (0.5)^0 (0.5)^7 = 1 \cdot 1 \cdot (0.5)^7 = 0.5^7 = \frac{1}{128} \approx 0.0078125 \][/tex]
### Step 4: Calculate the Probability of Getting 1 Tail
The probability of getting exactly 1 tail in 7 trials can be determined by:
[tex]\[ P(X = 1) = \binom{7}{1} (0.5)^1 (0.5)^6 = 7 \cdot 0.5 \cdot (0.5)^6 = 7 \cdot 0.5 \cdot \frac{1}{64} = \frac{7}{128} \approx 0.0546875 \][/tex]
### Step 5: Add the Probabilities of Getting 0 or 1 Tail
[tex]\[ P(X < 2) = P(X = 0) + P(X = 1) \][/tex]
[tex]\[ P(X < 2) = 0.0078125 + 0.0546875 = 0.0625 \][/tex]
### Step 6: Find the Probability of Getting At Least 2 Tails
The probability of getting at least 2 tails is the complement of getting fewer than 2 tails:
[tex]\[ P(X \geq 2) = 1 - P(X < 2) \][/tex]
[tex]\[ P(X \geq 2) = 1 - 0.0625 = 0.9375 \][/tex]
### Step 7: Convert the Probability to Fraction
Since 0.9375 is equivalent to the fraction representation:
[tex]\[ 0.9375 = \frac{15}{16} \][/tex]
Therefore, the answer is:
B. [tex]\(\boxed{\frac{15}{16}}\)[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.