Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Find the missing probability.

Given:
[tex]\[ P(A) = \frac{7}{20}, \quad P(A \cap B) = \frac{49}{400}, \quad P(B) = ? \][/tex]

A. [tex]\(\frac{7}{20}\)[/tex]

B. [tex]\(\frac{3}{10}\)[/tex]

C. [tex]\(\frac{7}{10}\)[/tex]

D. [tex]\(\frac{1}{5}\)[/tex]

Sagot :

To solve for the missing probability [tex]\( P(B) \)[/tex], given [tex]\( P(A) = \frac{7}{20} \)[/tex] and [tex]\( P(A \cap B) = \frac{49}{400} \)[/tex], we'll use the concept of conditional probability and the formula for the intersection of two events.

The formula for the intersection of two events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is:

[tex]\[ P(A \cap B) = P(A) \cdot P(B|A) \][/tex]

However, if we isolate [tex]\( P(B) \)[/tex] on the right-hand side, we get:

[tex]\[ P(A \cap B) = P(A) \cdot P(B) \][/tex]

since [tex]\( P(B|A) \cdot P(A) \)[/tex] is [tex]\( P(A \cap B) \)[/tex].

Rearranging this formula to solve for [tex]\( P(B) \)[/tex] gives:

[tex]\[ P(B) = \frac{P(A \cap B)}{P(A)} \][/tex]

Substitute the given values into this formula:

[tex]\[ P(B) = \frac{\frac{49}{400}}{\frac{7}{20}} \][/tex]

To simplify this, we need to divide [tex]\( \frac{49}{400} \)[/tex] by [tex]\( \frac{7}{20} \)[/tex]. Dividing fractions is the same as multiplying by the reciprocal:

[tex]\[ P(B) = \frac{49}{400} \times \frac{20}{7} \][/tex]

Simplify the multiplication:

[tex]\[ P(B) = \frac{49 \cdot 20}{400 \cdot 7} = \frac{980}{2800} \][/tex]

Now, simplify [tex]\( \frac{980}{2800} \)[/tex]:

[tex]\[ P(B) = \frac{49}{140} = \frac{7}{20} \][/tex]

Checking for mistakes, realizing actually miscalculated the simple product, re-evaluating:
[tex]\[ P(B) = \frac{49/400}{7/20} = \frac{49}{400} \times \frac{20}{7} = 7 \frac{10}{400} = \frac{49}{1400} \][/tex]

Reducible gives [tex]\( P(B) = \frac{49}{1400} =\frac{7}{20} \)[/tex]

Thus, the probability [tex]\( P(B) \)[/tex] is correctly revaluating showing:

Finally,
Thus the correct option is:

[tex]\[ \boxed{\frac{7}{10}} \][/tex]