Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve for the missing probability [tex]\( P(B) \)[/tex], given [tex]\( P(A) = \frac{7}{20} \)[/tex] and [tex]\( P(A \cap B) = \frac{49}{400} \)[/tex], we'll use the concept of conditional probability and the formula for the intersection of two events.
The formula for the intersection of two events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is:
[tex]\[ P(A \cap B) = P(A) \cdot P(B|A) \][/tex]
However, if we isolate [tex]\( P(B) \)[/tex] on the right-hand side, we get:
[tex]\[ P(A \cap B) = P(A) \cdot P(B) \][/tex]
since [tex]\( P(B|A) \cdot P(A) \)[/tex] is [tex]\( P(A \cap B) \)[/tex].
Rearranging this formula to solve for [tex]\( P(B) \)[/tex] gives:
[tex]\[ P(B) = \frac{P(A \cap B)}{P(A)} \][/tex]
Substitute the given values into this formula:
[tex]\[ P(B) = \frac{\frac{49}{400}}{\frac{7}{20}} \][/tex]
To simplify this, we need to divide [tex]\( \frac{49}{400} \)[/tex] by [tex]\( \frac{7}{20} \)[/tex]. Dividing fractions is the same as multiplying by the reciprocal:
[tex]\[ P(B) = \frac{49}{400} \times \frac{20}{7} \][/tex]
Simplify the multiplication:
[tex]\[ P(B) = \frac{49 \cdot 20}{400 \cdot 7} = \frac{980}{2800} \][/tex]
Now, simplify [tex]\( \frac{980}{2800} \)[/tex]:
[tex]\[ P(B) = \frac{49}{140} = \frac{7}{20} \][/tex]
Checking for mistakes, realizing actually miscalculated the simple product, re-evaluating:
[tex]\[ P(B) = \frac{49/400}{7/20} = \frac{49}{400} \times \frac{20}{7} = 7 \frac{10}{400} = \frac{49}{1400} \][/tex]
Reducible gives [tex]\( P(B) = \frac{49}{1400} =\frac{7}{20} \)[/tex]
Thus, the probability [tex]\( P(B) \)[/tex] is correctly revaluating showing:
Finally,
Thus the correct option is:
[tex]\[ \boxed{\frac{7}{10}} \][/tex]
The formula for the intersection of two events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is:
[tex]\[ P(A \cap B) = P(A) \cdot P(B|A) \][/tex]
However, if we isolate [tex]\( P(B) \)[/tex] on the right-hand side, we get:
[tex]\[ P(A \cap B) = P(A) \cdot P(B) \][/tex]
since [tex]\( P(B|A) \cdot P(A) \)[/tex] is [tex]\( P(A \cap B) \)[/tex].
Rearranging this formula to solve for [tex]\( P(B) \)[/tex] gives:
[tex]\[ P(B) = \frac{P(A \cap B)}{P(A)} \][/tex]
Substitute the given values into this formula:
[tex]\[ P(B) = \frac{\frac{49}{400}}{\frac{7}{20}} \][/tex]
To simplify this, we need to divide [tex]\( \frac{49}{400} \)[/tex] by [tex]\( \frac{7}{20} \)[/tex]. Dividing fractions is the same as multiplying by the reciprocal:
[tex]\[ P(B) = \frac{49}{400} \times \frac{20}{7} \][/tex]
Simplify the multiplication:
[tex]\[ P(B) = \frac{49 \cdot 20}{400 \cdot 7} = \frac{980}{2800} \][/tex]
Now, simplify [tex]\( \frac{980}{2800} \)[/tex]:
[tex]\[ P(B) = \frac{49}{140} = \frac{7}{20} \][/tex]
Checking for mistakes, realizing actually miscalculated the simple product, re-evaluating:
[tex]\[ P(B) = \frac{49/400}{7/20} = \frac{49}{400} \times \frac{20}{7} = 7 \frac{10}{400} = \frac{49}{1400} \][/tex]
Reducible gives [tex]\( P(B) = \frac{49}{1400} =\frac{7}{20} \)[/tex]
Thus, the probability [tex]\( P(B) \)[/tex] is correctly revaluating showing:
Finally,
Thus the correct option is:
[tex]\[ \boxed{\frac{7}{10}} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.