Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which of the given expressions must be even if [tex]\(9p + 5\)[/tex] is even, let's analyze the given condition step by step.
First, understand that for [tex]\(9p + 5\)[/tex] to be even, [tex]\(9p\)[/tex] itself must satisfy certain conditions. Here's how we can reason through the problem:
1. Given condition: [tex]\(9p + 5\)[/tex] is even.
2. If we subtract 5 from both sides of the given condition, we get:
[tex]\[ 9p + 5 - 5 = \text{even number} - 5 \implies 9p = \text{even number} - 5 \][/tex]
3. An even number minus an odd number results in an odd number. Thus:
[tex]\[ 9p = \text{odd number} \][/tex]
4. Since [tex]\(9p\)[/tex] is odd, [tex]\(p\)[/tex] itself must be odd. This is because 9 is an odd number, and for the product of two numbers to be odd, both numbers must be odd.
With [tex]\(p\)[/tex] confirmed to be odd, let's investigate each of the given options:
Option A: [tex]\(p + 5\)[/tex]
If [tex]\(p\)[/tex] is odd, adding 5 (which is also odd) to it will result in an even number since:
[tex]\[ \text{odd} + \text{odd} = \text{even} \][/tex]
Hence, [tex]\(p + 5\)[/tex] is even when [tex]\(p\)[/tex] is odd.
Option B: [tex]\(2p + 5\)[/tex]
If [tex]\(p\)[/tex] is odd, multiplying it by 2 will result in an even number since:
[tex]\[ 2 \times \text{odd} = \text{even} \][/tex]
However, adding 5 (an odd number) to an even number will result in an odd number since:
[tex]\[ \text{even} + \text{odd} = \text{odd} \][/tex]
Therefore, [tex]\(2p + 5\)[/tex] is odd when [tex]\(p\)[/tex] is odd.
Option C: [tex]\(5p\)[/tex]
If [tex]\(p\)[/tex] is odd, multiplying it by 5 (an odd number) will result in an odd number since:
[tex]\[ \text{odd} \times \text{odd} = \text{odd} \][/tex]
Hence, [tex]\(5p\)[/tex] is odd when [tex]\(p\)[/tex] is odd.
Option D: [tex]\(9p\)[/tex]
We already established that [tex]\(9p\)[/tex] is odd if [tex]\(p\)[/tex] is odd, since [tex]\(9\)[/tex] (an odd number) multiplied by another odd number results in an odd number:
[tex]\[ \text{odd} \times \text{odd} = \text{odd} \][/tex]
Hence, [tex]\(9p\)[/tex] is odd.
In summary, among the given options, the expression that must be even is:
[tex]\[ \boxed{p+5} \][/tex]
First, understand that for [tex]\(9p + 5\)[/tex] to be even, [tex]\(9p\)[/tex] itself must satisfy certain conditions. Here's how we can reason through the problem:
1. Given condition: [tex]\(9p + 5\)[/tex] is even.
2. If we subtract 5 from both sides of the given condition, we get:
[tex]\[ 9p + 5 - 5 = \text{even number} - 5 \implies 9p = \text{even number} - 5 \][/tex]
3. An even number minus an odd number results in an odd number. Thus:
[tex]\[ 9p = \text{odd number} \][/tex]
4. Since [tex]\(9p\)[/tex] is odd, [tex]\(p\)[/tex] itself must be odd. This is because 9 is an odd number, and for the product of two numbers to be odd, both numbers must be odd.
With [tex]\(p\)[/tex] confirmed to be odd, let's investigate each of the given options:
Option A: [tex]\(p + 5\)[/tex]
If [tex]\(p\)[/tex] is odd, adding 5 (which is also odd) to it will result in an even number since:
[tex]\[ \text{odd} + \text{odd} = \text{even} \][/tex]
Hence, [tex]\(p + 5\)[/tex] is even when [tex]\(p\)[/tex] is odd.
Option B: [tex]\(2p + 5\)[/tex]
If [tex]\(p\)[/tex] is odd, multiplying it by 2 will result in an even number since:
[tex]\[ 2 \times \text{odd} = \text{even} \][/tex]
However, adding 5 (an odd number) to an even number will result in an odd number since:
[tex]\[ \text{even} + \text{odd} = \text{odd} \][/tex]
Therefore, [tex]\(2p + 5\)[/tex] is odd when [tex]\(p\)[/tex] is odd.
Option C: [tex]\(5p\)[/tex]
If [tex]\(p\)[/tex] is odd, multiplying it by 5 (an odd number) will result in an odd number since:
[tex]\[ \text{odd} \times \text{odd} = \text{odd} \][/tex]
Hence, [tex]\(5p\)[/tex] is odd when [tex]\(p\)[/tex] is odd.
Option D: [tex]\(9p\)[/tex]
We already established that [tex]\(9p\)[/tex] is odd if [tex]\(p\)[/tex] is odd, since [tex]\(9\)[/tex] (an odd number) multiplied by another odd number results in an odd number:
[tex]\[ \text{odd} \times \text{odd} = \text{odd} \][/tex]
Hence, [tex]\(9p\)[/tex] is odd.
In summary, among the given options, the expression that must be even is:
[tex]\[ \boxed{p+5} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.