Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the recursive formula for the sequence [tex]\(2, 6, 10, 14, 18, \ldots\)[/tex], let's break it down step-by-step:
1. Identify the first term [tex]\( a_1 \)[/tex]:
The first term of the sequence is given as [tex]\( a_1 = 2 \)[/tex].
2. Identify the common difference [tex]\( d \)[/tex]:
To determine the common difference, subtract the first term from the second term, the second term from the third term, and so on:
[tex]\[ 6 - 2 = 4 \\ 10 - 6 = 4 \\ 14 - 10 = 4 \\ 18 - 14 = 4 \][/tex]
Hence, the common difference [tex]\( d \)[/tex] is [tex]\( 4 \)[/tex].
3. Formulate the recursive formula:
A recursive formula for an arithmetic sequence can be written as:
[tex]\[ a_n = a_{n-1} + d \][/tex]
where [tex]\( a_{n-1} \)[/tex] is the previous term and [tex]\( d \)[/tex] is the common difference. Here, [tex]\( d = 4 \)[/tex].
Therefore, the recursive formula becomes:
[tex]\[ a_n = a_{n-1} + 4 \][/tex]
4. Combine with the initial term:
Including the initial term, we get:
[tex]\[ a_1 = 2 \\ a_n = a_{n-1} + 4 \quad \text{for } n > 1 \][/tex]
This matches with option B from the given choices:
[tex]\[ \boxed{\begin{array}{l} a_1 = 2 \\ a_n = a_{n-1} + 4 \end{array}} \][/tex]
1. Identify the first term [tex]\( a_1 \)[/tex]:
The first term of the sequence is given as [tex]\( a_1 = 2 \)[/tex].
2. Identify the common difference [tex]\( d \)[/tex]:
To determine the common difference, subtract the first term from the second term, the second term from the third term, and so on:
[tex]\[ 6 - 2 = 4 \\ 10 - 6 = 4 \\ 14 - 10 = 4 \\ 18 - 14 = 4 \][/tex]
Hence, the common difference [tex]\( d \)[/tex] is [tex]\( 4 \)[/tex].
3. Formulate the recursive formula:
A recursive formula for an arithmetic sequence can be written as:
[tex]\[ a_n = a_{n-1} + d \][/tex]
where [tex]\( a_{n-1} \)[/tex] is the previous term and [tex]\( d \)[/tex] is the common difference. Here, [tex]\( d = 4 \)[/tex].
Therefore, the recursive formula becomes:
[tex]\[ a_n = a_{n-1} + 4 \][/tex]
4. Combine with the initial term:
Including the initial term, we get:
[tex]\[ a_1 = 2 \\ a_n = a_{n-1} + 4 \quad \text{for } n > 1 \][/tex]
This matches with option B from the given choices:
[tex]\[ \boxed{\begin{array}{l} a_1 = 2 \\ a_n = a_{n-1} + 4 \end{array}} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.