Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the difference in the concentration of hydrogen ions between two brands with pH values of 4.5 and 5.0, we will use the relationship between pH and hydrogen ion concentration [tex]\([H^+]\)[/tex] given by the formula:
[tex]\[ \text{pH} = -\log_{10}[H^+] \][/tex]
1. Convert the pH values to hydrogen ion concentrations.
For a pH of 4.5:
[tex]\[ [H^+]_1 = 10^{-\text{pH}} = 10^{-4.5} \][/tex]
For a pH of 5.0:
[tex]\[ [H^+]_2 = 10^{-\text{pH}} = 10^{-5.0} \][/tex]
Hence:
[tex]\[ [H^+]_1 = 3.1622776601683795 \times 10^{-5} \][/tex]
[tex]\[ [H^+]_2 = 1.0 \times 10^{-5} \][/tex]
2. Determine the relative difference in hydrogen ion concentration between the two pH levels by dividing the hydrogen ion concentration of the vinegar with pH 5.0 by the hydrogen ion concentration of the vinegar with pH 4.5.
[tex]\[ \frac{[H^+]_2}{[H^+]_1} = \frac{1.0 \times 10^{-5}}{3.1622776601683795 \times 10^{-5}} \][/tex]
3. Simplify the calculation:
[tex]\[ \frac{1.0 \times 10^{-5}}{3.1622776601683795 \times 10^{-5}} = 0.31622776601683794 \][/tex]
This indicates the hydrogen ion concentration in the vinegar with pH 5.0 is approximately [tex]\(0.316\)[/tex] times that with pH 4.5, which matches the answer [tex]\(3.2 \times 10^{-1}\)[/tex].
Therefore, the approximate difference in the concentration of hydrogen ions between the two brands of vinegar is:
[tex]\[ \boxed{3.2 \times 10^{-1}} \][/tex]
[tex]\[ \text{pH} = -\log_{10}[H^+] \][/tex]
1. Convert the pH values to hydrogen ion concentrations.
For a pH of 4.5:
[tex]\[ [H^+]_1 = 10^{-\text{pH}} = 10^{-4.5} \][/tex]
For a pH of 5.0:
[tex]\[ [H^+]_2 = 10^{-\text{pH}} = 10^{-5.0} \][/tex]
Hence:
[tex]\[ [H^+]_1 = 3.1622776601683795 \times 10^{-5} \][/tex]
[tex]\[ [H^+]_2 = 1.0 \times 10^{-5} \][/tex]
2. Determine the relative difference in hydrogen ion concentration between the two pH levels by dividing the hydrogen ion concentration of the vinegar with pH 5.0 by the hydrogen ion concentration of the vinegar with pH 4.5.
[tex]\[ \frac{[H^+]_2}{[H^+]_1} = \frac{1.0 \times 10^{-5}}{3.1622776601683795 \times 10^{-5}} \][/tex]
3. Simplify the calculation:
[tex]\[ \frac{1.0 \times 10^{-5}}{3.1622776601683795 \times 10^{-5}} = 0.31622776601683794 \][/tex]
This indicates the hydrogen ion concentration in the vinegar with pH 5.0 is approximately [tex]\(0.316\)[/tex] times that with pH 4.5, which matches the answer [tex]\(3.2 \times 10^{-1}\)[/tex].
Therefore, the approximate difference in the concentration of hydrogen ions between the two brands of vinegar is:
[tex]\[ \boxed{3.2 \times 10^{-1}} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.