Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve the given problem, we need to find the value of [tex]\( h \)[/tex] when [tex]\( N(h) = 450 \)[/tex] in the equation [tex]\( N(h) = 100 e^{0.25 h} \)[/tex].
Follow these steps:
1. Set up the equation:
Given that [tex]\( N(h) = 450 \)[/tex],
[tex]\[ 450 = 100 e^{0.25h} \][/tex]
2. Isolate the exponential term:
Divide both sides of the equation by 100 to isolate the exponential term.
[tex]\[ \frac{450}{100} = e^{0.25h} \rightarrow 4.5 = e^{0.25h} \][/tex]
3. Take the natural logarithm of both sides:
To solve for [tex]\( h \)[/tex], take the natural logarithm (ln) of both sides of the equation.
[tex]\[ \ln(4.5) = \ln(e^{0.25h}) \][/tex]
4. Simplify the logarithmic equation:
Using the property of logarithms that [tex]\( \ln(e^x) = x \)[/tex],
[tex]\[ \ln(4.5) = 0.25h \][/tex]
5. Solve for [tex]\( h \)[/tex]:
Divide both sides by 0.25 to solve for [tex]\( h \)[/tex].
[tex]\[ h = \frac{\ln(4.5)}{0.25} \][/tex]
6. Calculate the value of [tex]\( h \)[/tex]:
Using the natural logarithm value of 4.5,
[tex]\[ \ln(4.5) \approx 1.504 \][/tex]
Therefore,
[tex]\[ h \approx \frac{1.504}{0.25} \approx 6.016 \][/tex]
7. Round the result to the nearest whole number:
The nearest whole number to 6.016 is 6.
Therefore, after approximately 6 hours, 450 bacteria will be present.
So, the answer is:
[tex]\[ \boxed{6} \text{ hours} \][/tex]
Follow these steps:
1. Set up the equation:
Given that [tex]\( N(h) = 450 \)[/tex],
[tex]\[ 450 = 100 e^{0.25h} \][/tex]
2. Isolate the exponential term:
Divide both sides of the equation by 100 to isolate the exponential term.
[tex]\[ \frac{450}{100} = e^{0.25h} \rightarrow 4.5 = e^{0.25h} \][/tex]
3. Take the natural logarithm of both sides:
To solve for [tex]\( h \)[/tex], take the natural logarithm (ln) of both sides of the equation.
[tex]\[ \ln(4.5) = \ln(e^{0.25h}) \][/tex]
4. Simplify the logarithmic equation:
Using the property of logarithms that [tex]\( \ln(e^x) = x \)[/tex],
[tex]\[ \ln(4.5) = 0.25h \][/tex]
5. Solve for [tex]\( h \)[/tex]:
Divide both sides by 0.25 to solve for [tex]\( h \)[/tex].
[tex]\[ h = \frac{\ln(4.5)}{0.25} \][/tex]
6. Calculate the value of [tex]\( h \)[/tex]:
Using the natural logarithm value of 4.5,
[tex]\[ \ln(4.5) \approx 1.504 \][/tex]
Therefore,
[tex]\[ h \approx \frac{1.504}{0.25} \approx 6.016 \][/tex]
7. Round the result to the nearest whole number:
The nearest whole number to 6.016 is 6.
Therefore, after approximately 6 hours, 450 bacteria will be present.
So, the answer is:
[tex]\[ \boxed{6} \text{ hours} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.