Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Ask your questions and receive precise answers from experienced professionals across different disciplines. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the given problem, we need to find the value of [tex]\( h \)[/tex] when [tex]\( N(h) = 450 \)[/tex] in the equation [tex]\( N(h) = 100 e^{0.25 h} \)[/tex].
Follow these steps:
1. Set up the equation:
Given that [tex]\( N(h) = 450 \)[/tex],
[tex]\[ 450 = 100 e^{0.25h} \][/tex]
2. Isolate the exponential term:
Divide both sides of the equation by 100 to isolate the exponential term.
[tex]\[ \frac{450}{100} = e^{0.25h} \rightarrow 4.5 = e^{0.25h} \][/tex]
3. Take the natural logarithm of both sides:
To solve for [tex]\( h \)[/tex], take the natural logarithm (ln) of both sides of the equation.
[tex]\[ \ln(4.5) = \ln(e^{0.25h}) \][/tex]
4. Simplify the logarithmic equation:
Using the property of logarithms that [tex]\( \ln(e^x) = x \)[/tex],
[tex]\[ \ln(4.5) = 0.25h \][/tex]
5. Solve for [tex]\( h \)[/tex]:
Divide both sides by 0.25 to solve for [tex]\( h \)[/tex].
[tex]\[ h = \frac{\ln(4.5)}{0.25} \][/tex]
6. Calculate the value of [tex]\( h \)[/tex]:
Using the natural logarithm value of 4.5,
[tex]\[ \ln(4.5) \approx 1.504 \][/tex]
Therefore,
[tex]\[ h \approx \frac{1.504}{0.25} \approx 6.016 \][/tex]
7. Round the result to the nearest whole number:
The nearest whole number to 6.016 is 6.
Therefore, after approximately 6 hours, 450 bacteria will be present.
So, the answer is:
[tex]\[ \boxed{6} \text{ hours} \][/tex]
Follow these steps:
1. Set up the equation:
Given that [tex]\( N(h) = 450 \)[/tex],
[tex]\[ 450 = 100 e^{0.25h} \][/tex]
2. Isolate the exponential term:
Divide both sides of the equation by 100 to isolate the exponential term.
[tex]\[ \frac{450}{100} = e^{0.25h} \rightarrow 4.5 = e^{0.25h} \][/tex]
3. Take the natural logarithm of both sides:
To solve for [tex]\( h \)[/tex], take the natural logarithm (ln) of both sides of the equation.
[tex]\[ \ln(4.5) = \ln(e^{0.25h}) \][/tex]
4. Simplify the logarithmic equation:
Using the property of logarithms that [tex]\( \ln(e^x) = x \)[/tex],
[tex]\[ \ln(4.5) = 0.25h \][/tex]
5. Solve for [tex]\( h \)[/tex]:
Divide both sides by 0.25 to solve for [tex]\( h \)[/tex].
[tex]\[ h = \frac{\ln(4.5)}{0.25} \][/tex]
6. Calculate the value of [tex]\( h \)[/tex]:
Using the natural logarithm value of 4.5,
[tex]\[ \ln(4.5) \approx 1.504 \][/tex]
Therefore,
[tex]\[ h \approx \frac{1.504}{0.25} \approx 6.016 \][/tex]
7. Round the result to the nearest whole number:
The nearest whole number to 6.016 is 6.
Therefore, after approximately 6 hours, 450 bacteria will be present.
So, the answer is:
[tex]\[ \boxed{6} \text{ hours} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.