Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Question

What is the value of [tex]$\log _3 3$[/tex]?


Sagot :

To find the value of [tex]\(\log_3 3\)[/tex], let's break it down step by step.

1. Understanding Logarithms:
- The logarithm [tex]\(\log_b a\)[/tex] asks the question, "To what power must the base [tex]\(b\)[/tex] be raised, to get the number [tex]\(a\)[/tex]?"

2. Setting Up the Problem:
- We are given [tex]\(\log_3 3\)[/tex] and need to find its value.
- In mathematical terms, we are looking for [tex]\(x\)[/tex] in the equation [tex]\(3^x = 3\)[/tex].

3. Solving the Equation:
- Because the bases are the same, we can equate the exponents directly.
- Therefore, if [tex]\(3^x = 3^1\)[/tex], it implies that [tex]\(x = 1\)[/tex].

4. Conclusion:
- The value of [tex]\(\log_3 3\)[/tex] is [tex]\(1\)[/tex].

Thus, [tex]\(\log_3 3 = 1\)[/tex]. This matches the answer given.