Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Enter the correct answer in the box.

Rewrite the equation for [tex]\( x \)[/tex], and express its value in terms of [tex]\( a \)[/tex].

[tex]\[ \frac{3}{a} x - 4 = 20 \][/tex]


Sagot :

Certainly! Let's work through the problem step-by-step to find the value of [tex]\( x \)[/tex] in terms of [tex]\( a \)[/tex].

Given the equation:
[tex]\[ \frac{3}{a} x - 4 = 20 \][/tex]

1. Isolate the term involving [tex]\( x \)[/tex]:
To do this, we'll add 4 to both sides of the equation:
[tex]\[ \frac{3}{a} x - 4 + 4 = 20 + 4 \][/tex]
Simplifying both sides:
[tex]\[ \frac{3}{a} x = 24 \][/tex]

2. Solve for [tex]\( x \)[/tex]:
We need to isolate [tex]\( x \)[/tex] on one side. To do this, we'll multiply both sides of the equation by [tex]\( \frac{a}{3} \)[/tex] (which is the reciprocal of [tex]\( \frac{3}{a} \)[/tex]):
[tex]\[ \left(\frac{a}{3}\right) \cdot \frac{3}{a} x = 24 \cdot \left(\frac{a}{3}\right) \][/tex]
Simplifying the left side:
[tex]\[ x = 24 \cdot \frac{a}{3} \][/tex]

3. Simplify the expression:
[tex]\[ x = 24 \cdot \frac{a}{3} = 8a \][/tex]

Thus, the value of [tex]\( x \)[/tex] in terms of [tex]\( a \)[/tex] is:
[tex]\[ x = 8a \][/tex]